
Behavioral fine-grained detection and classification of
P2P bots

Nizar Kheira, Xiao Hana, Chirine Wolleyb

aOrange Labs, France
bUniversité d’Aix-Marseille, France

Abstract

Modern botnets are increasingly shifting towards overlay networks, using peer-
to-peer (P2P) protocols, for command and control (C&C). P2P botnets are
robust against detection and takedown as they avoid single nodes of failure,
and mostly use custom encrypted C&C communications. Pattern-based signa-
tures are also inappropriate, yet they cannot efficiently detect malware that uses
benign P2P applications such as Kademlia and Overnet. This paper presents
PeerMinor, a fully behavioral system that detects and classifies P2P bots in-
side corporate networks. PeerMinor learns the behavior of known malware and
benign P2P applications in order to detect P2P bots and provide security ad-
ministrators with a correct diagnosis of ongoing malware infections.

PeerMinor operates in two phases, learning and detection. In the learning
phase, it processes known malware and benign P2P traffic in order to build a
two-stage classifier. In the first stage, PeerMinor uses supervised learning in or-
der to build a detection model that separates malicious and benign P2P network
activity. In the second stage, it builds a one-class classifier for each known P2P
malware family, and uses these classifiers to associate detected P2P bots with
a known malware family where possible, thus providing a better situational
awareness for system administrators. During detection, PeerMinor processes
network traffic using its learning-based model in order to detect P2P bots. To
the best of our knowledge, PeerMinor is the first behavioral system that goes
beyond simple detection in order to provide an accurate diagnosis about on-
going malware infections. Experimental results prove that PeerMinor achieves
both scalability and accuracy. It uses only network features with no need of
pattern-based signatures, which can be easily evaded by botnet herders.

Keywords: P2P botnets, Behavioral detection, Machine learning, netflow,
intrusion detection

Email addresses: nizar.kheir@orange.com (Nizar Kheir), xiao.han@orange.com (Xiao
Han), chirine.wolley@etu.univ-amu.fr (Chirine Wolley)

Preprint submitted to Computer Virology November 24, 2014



1. Introduction

Botnets have become by far the spearhead of malware activity on the Inter-
net today. They constitute networks of infected nodes that communicate with
an attacker through a common Command and Control (C&C) infrastructure.
Botnet topologies have been constantly evolving in the recent years, yet current
detection systems can no longer keep pace with their growing threat [1]. In fact,
botnets are no longer being used only to trigger massive distributed attacks such
as spam and DDoS, but more often to seek financial benefits and sensitive user
data [2, 3]. They only trigger little network traffic, mostly signaling flows that
are usually encrypted in order to evade network IDS signatures. Botnet herders
also use code obfuscation and binary polymorphism in order to hide malware
payloads so they get unnoticed by anti-virus solutions [4, 5]. Network monitor-
ing systems are thus being confronted to stealthy botnets, along with encrypted
communications and only few infections inside a network perimeter [6].

Indeed, the recent years have witnessed a major shift in botnet C&C activity,
increasingly relying on distributed overlay networks that add more flexibility
and resilience to botnet topologies [7]. Hence, malware started developing peer-
to-peer (P2P) capabilities, using either benign-like P2P applications such as
Kademlia (e.g. the TDSS botnet) and Overnet (e.g. the Storm botnet), or
custom P2P protocols such as Waledac and Zeus [8]. Although being difficult
to setup and manage, P2P botnets are robust as they dispose of single nodes
of failure in their architectures. Yet detection and classification of P2P botnets
add more challenges because of the following reasons.

First of all, P2P traffic is difficult to characterize using only network layer
features. In fact, benign P2P applications increasingly use random ports and
encrypted payloads, so they can no longer be detected using protocol-based
signatures [9, 10]. Therefore, P2P botnets can easily dissimulate their signaling
activity as part of benign P2P communications [11].

Second, P2P bots cannot be detected using blacklists of domain names or IP
addresses, as for centralized botnet topologies [12]. In fact, P2P bots locate and
retrieve commands using the overlay network. Two infected bots are unlikely
to connect to the same set of peers, even though some overlaps may occur.
Therefore, detection of P2P infected nodes should be based on the way these
nodes interact with the overlay network, and not based on the single IP addresses
or domain names being contacted.

Last of all, persistent malware is becoming stealthier in the way it spreads
infection over the network. Security administrators are oftentimes confronted
with a limited number, yet a single infection by the same malware inside their
network perimeter. Hence, botnet detection within the same administrative
domain is becoming increasingly difficult when relying only on botnet swarm
effects [13]. In fact current botnet detection systems must be able to detect
even a single infection inside the domain to be protected.

This paper builds upon previous work for the same authors in [26, 27] and
proposes a behavioral, scalable and fine-grained P2P bot detection system. In
[27], authors propose a behavioral malware classification system that is designed

2



to work offline. It processes network communications for malware running in a
sandbox and associates this malware with a known malware family. The system
in [27] cannot differentiate flows for malicious and benign P2P applications
that are running on the same network terminal. Hence, this system cannot be
easily integrated within an inline P2P botnet detection system. On the other
hand, authors propose in [26] a system that detects active P2P bots through
network analysis. It tells apart malicious and benign P2P flows for a given
network terminal, but cannot associate infected terminals with a given malware
family. Therefore, the main contribution of this paper is a new architecture that
integrates both malware detection [26] and classification [27] functionalities in
a more comprehensive P2P botnet detection system.

The main idea in this paper is that malware belonging to the same family
embeds the same P2P toolkits and communicates with the overlay P2P botnet in
the same way. In fact P2P protocols include both control flows and data transfer
flows [14]. Transfer flows mostly depend on the data being shared through the
network. However, control flows carry signaling activities such as node discov-
ery, route requests, search requests and keep-alive, and that reliably characterize
the P2P protocol being implemented. As shown in [15], flow size distributions
exhibit discontinuities almost for all P2P protocols. Such discontinuities char-
acterize clusters of flows that implement the same P2P functionality, and so
they have similar network behavior in terms of flow size, number of packets and
flow duration. While certain clusters, such as keep-alive flows, may be common
for both malware and benign P2P applications, others clearly show differences
that can be accounted for during detection. For instance, data search queries
for the Zeus P2P botnet show periodicities that are unlikely to appear in other
benign Kademlia P2P traffic [2]. Yet the Sality botnet has a lower chunk rate
for route discovery requests, compared to other benign P2P applications.

Our system, called PeerMinor, observes network traffic for known malware
samples and uses several heuristics to isolate relevant P2P signaling activities. It
further builds a behavioral detection model using only network-layer features,
with no need for deep packet inspection. PeerMinor describes the network
activity of a P2P malware using high level features such as periodicities, chunk
rate and geographical distribution. It operates in two phases, the learning phase
and the detection phase. During the learning phase, it first builds a supervised
learning system that is used to inspect P2P traffic and extract botnet C&C
activity. Then it implements unsupervised clustering mechanisms in order to
build families of P2P malware and uses these families to associate a detected
bot infection with a known P2P malware family where possible.

During detection, PeerMinor processes network traffic and builds clusters of
P2P flows for each network terminal. It uses P2P flow clusters in order to build
a network footprint for each terminal, and matches this footprint against its
malware P2P classifiers in order to detect and characterize infected P2P bots.

The main contribution of this paper, compared to the previous work for the
same authors in [26, 27], is scalability. We achieve scalability by simplifying
the multi-step P2P filtering process proposed in [26] and leveraging incremental
clustering algorithms that run efficiently on very large datasets. They apply

3



first on an IP basis in order to discard non P2P flows triggered by each single
endpoint, and then regroup and correlate P2P flows in order to build network
footprints that can be compared against known malware families. We would
like to emphasize that scalability is an important requirement for the system
described in [27], and that we introduce in this paper. In fact building network
footprints for every single endpoint is a greedy process as it requires two rounds
of flow clustering and filtering applied to every single endpoint. Therefore,
the architecture that we propose in this paper incorporates two functionalities,
including first a P2P inspection module that rapidly discards endpoints that
do not run any P2P application, as well as endpoints that are likely to be
acting as benign P2P nodes. Only infected P2P nodes are handed for malware
family recognition by the classifier module. To summarize, PeerMinor both
detects P2P bots and associates them with appropriate P2P botnet families,
if any. To the best of our knowledge, it is the first to combine behavioral
detection with subsequent diagnosis and malware family identification. Indeed,
our experimental results prove the ability of PeerMinor to accurately detect and
classify P2P bots with a very low false positives rate.

The remaining of this paper will be structured as follows. Section 2 describes
related work. Section 3 presents the architecture and workflow of our system.
Section 4 develops our experiments and the process that we used to validate
our system. Section 5 discusses techniques to evade our system and shows how
PeerMinor is resilient against these techniques. Finally, section 6 concludes.

2. Related work

Related work includes several techniques to detect and classify botnets th-
rough behavioral traffic analysis. They usually provide a binary classification of
P2P nodes, being either infected or benign [13, 16, 17, 19, 20, 21, 22]. Yet there
is only few approaches that build families of P2P malware based on its network
behavior, and use these families during detection and diagnosis [23, 24].

Solutions such as BotGrep [13], BotTrack [19] and BotMiner [20] offer sim-
ilar techniques to correlate netflow data [25] and localize P2P bots based on
their overlay C&C topologies. They build clusters of hosts based on their net-
work activity and isolate groups of hosts that constitute common P2P networks.
They further separate malicious and benign P2P groups by correlating informa-
tion from multiple sources such as honeypots and intrusion detection systems.
Unfortunately, these techniques are inappropriate against modern botnets. In
fact botnets are becoming stealthier and so they cannot be easily detected using
only IDS signatures, thus limiting the coverage of these techniques.

Bilge et al. propose an alternative approach that detects botnets using large
scale netflow analysis [17]. They observe ISP traffic and detect botnets through
the coordinated activity for groups of infected nodes. This approach detects
only centralized botnet architectures, and cannot accurately detect distributed
P2P botnets. As opposed to [17], other existing studies offer to detect infected
P2P bots only inside a given network perimeter [21, 22]. They first discard non-
P2P traffic using heuristics such as DNS traffic and failed connection attempts.

4



Then they build groups of P2P nodes that have the same network behavior
or that connect to similar IP addresses. They further propose a similarity
degree in order to detect nodes that are likely to be part of a same botnet.
These studies can only detect P2P bots when multiple infected nodes belong
to the same botnet inside a network perimeter. Yet they only provide a binary
classification, with no ability to identify common malware families.

Another trend of research consists of passively observing DNS traffic in order
to detect malicious C&C domains [16, 18]. Authors in [18] build a dynamic DNS
reputation system that uses both network and zone features of a given domain.
They consider that the malicious use of DNS has unique characteristics and can
be separated from benign, professionally provisioned DNS services. Therefore,
they passively observe DNS queries and build models of known benign and ma-
licious domains. These models are used to compute a reputation score for a
newly observed domain, and which indicates whether this domain is indeed ma-
licious or benign. On the other hand, Bilge et al. in [16] propose an alternative
approach that applies machine learning to a set of 15 DNS features in order to
identify malicious C&C domains. They build a learning set of known benign
and malicious domain names that is used to train a DNS classifier. This clas-
sifier passively monitors real-time DNS traffic and identifies malware domains
that do not appear in existing blacklists. Features in [16] are grouped into four
categories, including time-based features, response features, TTL features and
syntactical domain name features. They characterize anomalies in the way a
given domain name is being requested, including abrupt changes in DNS queries
towards this domain. Unfortunately, P2P botnets constitute overlay networks
where bots communicate directly using IP address in the overlay network, with
no need to use the DNS service. Hence, detection of botnets using DNS features
cannot be efficiently applied to detect P2P bots.

On the other hand, PeerRush provides in [23] a similar approach to our
system that aims at classifying P2P flows and identifying specific P2P protocols
or applications. It uses features such as inter-packet delays and flow duration in
order to classify P2P applications. PeerRush achieves good detection accuracies
against benign P2P applications. However, it is not clear how this system will
contribute to classifying P2P botnets. For example, inter-packet delays can be
easily evaded and these are weak indicators of P2P activity. Yet PeerRush deals
with all P2P signaling flows as a whole. It does not classify flows according to
their embedded message types and the rate of each signaling activity. This paper
provides a better alternative to PeerRush, by offering to separate detection and
diagnosis of P2P malware infections. In fact our system includes a P2P inspector
module that first tells apart malicious and benign P2P applications. Hence, only
network footprints for malicious P2P nodes are used in our system as input to a
malware classifier module, and that associates these footprints with known P2P
malware families where possible.

Last of all, Hu et al. [24] use flow statistics to build behavior profiles for
P2P applications. They experimented only with two P2P applications (PPLive
and BitTorrent), and did not consider malicious P2P activity. Yet, they do
not separate P2P control and data traffic. In fact data flows do not clearly

5



characterize P2P botnet C&C activity as they depend on the content being
shared. Therefore, we classify in this paper P2P signaling flows and use only
these as a basis for P2P botnet detection. To the best of our knowledge, our
approach is the first to combine both behavioral detection and diagnosis in order
to detect and correctly characterize ongoing malware infections inside a given
network perimeter.

Learning Phase

Malware Benign

P2P filter

P2P Malware P2P Benign

P2P inspector

Malware classifier

Detection Phase

DNS traffic

Netflow
P2P filter

P2P Malware
detector

P2P Bots

Feedback

Figure 1: Botnet Detection System

3. Botnet detection system

3.1. System overview

PeerMinor detects and classifies P2P bots using only network traffic features.
As in figure 1, it builds a P2P malware detection model using a learning set of
malware and benign P2P traffic. Then it applies this model to network traffic
in order to detect P2P bots inside a given network perimeter. PeerMinor goes
beyond the simple detection of P2P bots in order to associate infected nodes
with a known P2P malware family where possible. As illustrated in figure
1, the training phase of PeerMinor includes two main components: the P2P
inspector and P2P malware classifier. P2P inspector uses supervised learning
to separate malicious and benign P2P traffic when observed for a given network
node. On the other hand, P2P malware classifier builds a P2P footprint for
every infected node and assigns this footprint to a known P2P malware family.
PeerMinor also notifies the administrator of a new, yet unknown malware P2P
footprint so it can be submitted to a deeper manual analysis. While the P2P
inspector and malware classifier modules were separately introduced in [26] and
[27], PeerMinor offers a framework that combines both functionalities in a more
comprehensive P2P botnet detection system.

6



3.1.1. P2P filter module

During training, PeerMinor processes malware traffic obtained through exe-
cution in a sandbox environment (e.g. Anubis [28], CWSandbox [29] or Cuck-
oobox1). Identification and extraction of P2P malware samples from within a
malware database can be performed using either a ground truth malware dataset
such as the VirusTotal API2, or directly using the behavioral P2P filter module
implemented by PeerMinor. To the purpose of this paper, and in order to build
a ground truth dataset to validate our system, we pick-up P2P malware using
antivirus (AV) signatures in virusTotal. Nonetheless, P2P malware also trig-
gers non-P2P flows in addition to its main C&C communications. Therefore,
PeerMinor implements a P2P filter that uses several heuristics to discard flows
that do not carry any P2P activity during analysis. For instance, the rate of
failed connection attempts is usually used as a way to detect P2P applications.
Therefore, our filter discards malware whose rate of failed connection attempts
does not exceed a given threshold. It also uses other heuristics such as flows
initiated after successful DNS requests, number and geographical distribution of
remote contacted IPs. Our experimental results prove that our filter is indeed
effective in eliminating non-P2P malware, with almost no false positives.

As opposed to P2P malware, benign P2P flows are difficult to collect as we
often lack the ground truth about the legitimate behavior of P2P applications
on the network. Indeed, executing benign P2P applications in a controlled
environment does not reveal all intricacies of real P2P traffic. In this paper,
we collect netflow packets from a well-protected corporate network. Terminals
in this network abide to strict access policies. They are all equipped with an
updated AV solution and outbound traffic from this network is monitored using a
proxy server with SSL inspection capability. Hence, we can reasonably consider
as benign all traffic collected from this network. Although we cannot discard
the possibility of few terminals being infected, these are limited compared to
the overall amount of traffic and so they would have little impact on our system.
As in figure 1, PeerMinor discards non-P2P flows for this network and keeps
only benign P2P flows the same way as it did for malware traffic.

3.1.2. P2P inspector module

The P2P inspector builds a detection model using the labeled set of malware
and benign P2P flows. First, it groups P2P flows for each malware or benign
P2P application into clusters where they are similar enough so they are likely to
implement the same P2P functionality (P2P keep alive, P2P search queries, P2P
route discovery). It uses for this purpose only network layer features such as
flow size, number of packets, and bit rates. In fact control flows that implement
the same P2P signaling activity for the same P2P protocol have similar network
features and so they will be grouped within same clusters.

The P2P inspector further characterizes the P2P activity for flows in a given

1http://www.cuckoobox.org/
2http://www.virustotal.com/

7



cluster using a comprehensive set of features, including time, space and flow
size-based features. Time features capture unusual sequences of flows and pe-
riodicities in a cluster. Space features capture the dynamics of a P2P network
such as geographical distribution and chunk rate, including the rate of (new)
IP addresses and ports contacted by a P2P application. Size-based features
capture high-level properties such as the bit rates and packets shared by flows
in a cluster. The P2P inspector uses these features in order to first prune the
training set and eliminate non-discriminatory P2P clusters. It cross-correlates
P2P clusters and discards those that have similar properties in both malware
and benign P2P applications. These are mostly clusters of P2P keep-alive flows
that are likely to have similar implementations in both categories of P2P ap-
plication. The inspector module uses the remaining discriminatory clusters as
input to train and build the P2P botnet detection model. By grouping flows
into clusters where they implement the same P2P functionality, the P2P inspec-
tor detects infected P2P bots even when they execute benign P2P applications.
In fact, malicious and benign P2P flows triggered by the same terminal will be
grouped into different clusters as they have different P2P characteristics. There-
fore, malicious P2P flows will be grouped into different clusters and so they will
be correctly detected by the inspector.

3.1.3. P2P classifier module

During training, the P2P classifier processes only malware P2P flows. It
groups together samples of the same malware family, and builds a one-class
classifier for each P2P malware family. During detection, malicious P2P flows
detected by the inspector module are used by the classifier in order to associate
these with a known malware family where possible.

Malware samples that belong to the same family have similar P2P signaling
activities, and therefore their P2P flows share similar high level features. As
opposed to the inspector module that builds clusters of flows for every single
malware sample, the classifier module builds clusters of flows by comparing P2P
flows for all malware in the initial learning set. It uses unsupervised clustering
in order to group together similar malware flows that are likely to implement the
same P2P activity. The flow clustering process uses high-level malware traffic
features such as flow size, number of packets, bits per packet, and flow duration.
It provides a multiple set of clusters, each one including P2P flows triggered by
multiple malware samples, but carrying the same P2P signaling activity (e.g.
keep-alive, route discovery, search request, push data) and protocol.

Malware of the same family has its P2P flows grouped within the same
clusters because they carry the same P2P signaling activities. The malware
classifier module uses P2P flow clusters in order to build families of malware
that implement the same P2P protocol. It builds a P2P footprint Fα{ci}mi=1

of size m for each malware Mα, and which specifies the rate of malware P2P
flows within each cluster {ci}mi=1. In other terms, the feature Fα{ck} would be
set to 0 if malware Mα has no flows in cluster ck, and it will be set to 1 if it
has all its P2P flows in ck. PeerMinor uses malware footprints as a training set
to build P2P malware clusters, each cluster representing a new P2P malware

8



family. Hence, malware that is grouped by PeerMinor into the same family
implements the same P2P protocol and has the same P2P botnet topology.

3.1.4. P2P detector module

The P2P detector applies both inspection and classification models to net-
work traffic in order to detect P2P bots, with no need for deep packet inspection.
The P2P inspection module provides a single classifier that tells apart malicious
and benign P2P nodes. It is used by the detector module in order to rapidly
discard nodes that are unlikely to implement botnet-related P2P activity. Re-
maining nodes are further provided as input to the one-class classifiers generated
by the classifier module. These classifiers are used by the detector in order to
associate an infected node with a known P2P malware family where possible.
Our system thus provides the administrator with appropriate information in
order to characterize and further remediate ongoing P2P malware infections.
Infected nodes that are unknown to the classifier module are identified by our
system as new P2P malware. These can be further submitted to the security
administrator for a deeper manual analysis.

3.2. System description

3.2.1. P2P flow filtering

PeerMinor implements several heuristics to discard flows that do not carry
P2P signaling activity. In fact P2P traffic has multiple properties that are dif-
ferent from other centralized network communications, and that can be charac-
terized using high-level network behaviors. This paragraph describes properties
that we use in order to discard non-P2P traffic and keep only P2P flows for mal-
ware detection and diagnosis. A malware P2P flow thus represents a network
connection triggered by malware, and that carries signaling activity associated
with the P2P botnet communication. A formal definition of malware and benign
P2P flows is further provided in section 3.2.2.

DNS filtering is commonly used to discard non-P2P traffic. Nodes in a P2P
network operate outside the DNS system [9]. They search for other peers using
routing tables in the overlay network, without prior DNS requests. Although
access to a central server through DNS resolution is possible at bootstrap, nodes
further communicate directly using IP addresses, and access to the DNS service
is usually no longer required. Hence, the DNS filter discards as non-P2P flows
all flows that are preceded with a successful DNS resolution.

Failed connection filter processes flows not eliminated by the DNS filter. It
observes the churn effect, which is an inherent property of P2P systems and
critical to their design and implementation [12]. Churn effect is a direct conse-
quence of the independent arrival and departure by thousands of peers in the
network, and results in a significant rate of failed connection attempts. We
consider as failed connection attempts all unidirectional UDP flows, and failed
TCP syn attempts including either no TCP response or a TCP reset. We use
this rate within malware and benign traffic in order to discard those that do
not implement P2P applications.

9



Flow size filter keeps only flows that include P2P signaling activity, and
discards P2P data flows. The flow size distribution of P2P traffic usually shows
discontinuities near small flow sizes, and that characterize P2P signaling activity
[24]. It also includes flows with clearly higher flow sizes, usually involving data
transfer. Our P2P filter drops all flows whose size exceeds a given threshold
that we empirically define based on P2P flow size distributions in [15, 24].

AS-based filtering: P2P botnets constitute overlay architectures that spans
multiple autonomous systems (AS). We use the rate of distinct AS numbers
within a malware trace in order to discard non-P2P malware. It is defined as
the number of remote AS to the total number of flows ratio in a given malware
trace. We empirically set a threshold τas = 0.2 for this rate, based on our
malware training set. We discard malware whose rate of distinct AS numbers
does not exceed this threshold.

Although these heuristics cannot discard all non-P2P flows, they are reliable
enough to characterize the network behavior of P2P applications. They describe
invariants in the P2P signaling activity, and so they cannot be easily evaded
without modifying the P2P protocol implementation. The output of this filter
is a set of P2P signaling flows for each malware or benign P2P application. We
use these flows as input to the P2P inspector and classifier modules.

3.2.2. Malware classification

PeerMinor characterizes the network behavior of a P2P application through
its signaling activity, which results in different distributions of flows at the
network layer. It proceeds first with a flow clustering step that groups together
malware P2P flows that implement the same protocol and signaling activity.
Then it uses clusters of P2P flows in order to define a P2P footprint for each
malware sample. Last of all, it applies unsupervised clustering to malware
footprints in the initial learning set in order to build P2P malware families.

We consider as a malware P2P flow both the flow triggered by a malware
and its associated peer response. We represent a bidirectional flow using the
following features vector: fα =<Mα, proto,Bs, Br, Pkts, Pktr,∆t >. Features
of this vector are defined as follows: Mα is a tag that associates flow fα with
malware Mα; proto is a tag that designates the transport layer protocol, being
either TCP or UDP; Bs and Br are the amount of Bytes sent and received
within fα; Pkts and Pktr are the number of packets sent and received; and ∆t

is the flow duration. We separately build clusters for TCP and UDP flows using
the proto tag, as these flows clearly carry different signaling activities.

We use incremental K-means clustering in order to build clusters of P2P
flows. It increments clusters when the distance of a flow to all existing clusters
exceeds a given threshold. We use the Euclidian distance in order to compute
the similarity between two separate malware P2P flows, and we set different
clustering thresholds for TCP and UDP flows. In fact TCP flows have a higher
offset size because of their larger TCP headers and their higher number of
packets compared to UDP flows, due to TCP handshake and TCP Acks. Hence,
we empirically set TCP and UDP thresholds to 100 and 20 respectively. They

10



characterize the minimal flow size (400 and 40) to the minimal packets number
(4 and 2) ratio for non-empty TCP and UDP flows.

The classifier module builds clusters of flows by comparing P2P flows that
were extracted by the filter module from the initial malware training set. P2P
flows for a malware sample Mα may span on multiple clusters. Each cluster
contains flows that have similar network features, and so they are likely to carry
the same P2P signaling activity and protocol, but that are triggered by different
malware samples. We further build a P2P footprint for each malware in our
dataset. It specifies the rate of flows for a given malware within each P2P flow
cluster provided by our system. In other terms, a malware footprint Fα{ci}mi=1

is an m − arry vector of size m, where m is the number of P2P flow clusters.
Attribute Fα{ck} for malwareMα corresponds to the fraction of P2P flows for
Mα within ck, with respect to the total number of P2P flows in the network
trace of Mα. Attributes of a malware footprint are real values in the [0, 1]
interval, with

∑
Fα{ci}mi=1 = 1.

PeerMinor further uses hierarchical clustering in order to group together
malware that has similar P2P footprints so they are likely to use the same
P2P botnet topology. It creates a dendrogram where leaf nodes are elementary
P2P malware, and the root node is a set of all malware samples. It also uses
the Davies-Bouldin index [30] to find the optimal cut in the dendrogram, and
thus to obtain the final set of P2P malware families. Each family includes a
set of malware samples aggregated within a single node in the dendrogram.
Malware families are further used by the detection module in order to associate
an infection with a known malware family.

The classifier module builds a one-class classifier for each family of malware.
It applies the supervised one class SVM learning model [31] to the footprints of
malware within each family provided by the classifier module. It characterizes
the P2P footprints for malware samples within this family. During detection,
PeerMinor collects the network trace for infected terminals detected by the P2P
inspector module. It applies P2P filtering and builds a network footprint that
it uses to associate an infection with a known malware family. PeerMinor tests
this footprint against the one-class classifiers for all malware families in the
training set. It associates an infection with a given malware family when its
P2P footprint matches the one-class classifier of this family. Yet PeerMinor
is unable to classify a bot infection when its P2P footprint matches any, or
more than a single malware family. It notifies the security analyst of a new or
unknown P2P malware, so it can be submitted to a deeper analysis.

3.2.3. Malware detection

Extracting detection features. The inspection module uses the labeled set of
flows provided by the P2P filter in order to build a supervised malware detection
system. It applies K-means clustering, using the same features vector fα, to P2P
flows triggered by a given malware or benign P2P application in order to group
together flows that carry the same signaling activity. Flows that implement
similar functionalities for a given malware or benign terminal are grouped within
the same clusters. As opposed to the malware classifier, the inspector module

11



builds clusters of flows for each individual malware or benign P2P application
and uses these clusters as a labeled set to train a supervised learning system.

The output of the k-means clustering process is a multiple set of flow clusters
for each malware or benign P2P terminal. PeerMinor further describes each
cluster using a comprehensive set of features. Note that the use of netflow
data for machine learning and botnet detection is often criticized because it
provides only generic information such as port numbers or contacted IPs [25].
The raw use of those features usually leads to overfitted models that only detect
malware in the initial training set. PeerMinor thus proposes a set of features
that goes beyond the intrinsic characteristics of every single netflow record. It
better describes the relationship and common trends among all netflow records
within a single cluster. Such features capture invariants in C&C channels for
P2P botnets. They cannot be easily evaded, yet they are generic enough to
detect P2P botnets not initially represented in the training set. Our training
features can be grouped into three categories, as follows.

Time-based features: Malware P2P control flows may be similar to benign
flows when observed during short intervals of time. However, observing these
flows at longer durations may reveal periodicities that are unlikely to exist in
benign P2P flows. For example, table 1 illustrates the periods between commu-
nication rounds for P2P malware in our dataset. Time-based features capitalize
on this observation in order to characterize the occurrence of control flows within
a cluster as a function of time. We leverage periodicities in a cluster using the
recurrence period density entropy (RPDE)[32]. RPDE is a normalized metric in
time series analysis that determines the periodicity of a signal. It is equal to 0 in
case of perfectly periodic signals and equal to 1 for white random noise signals.
We build a time series that represent the occurrence of flows in each cluster
provided by the P2P filter module. It is defined as the ordered list of times-
tamps associated with all flows in a given P2P flow cluster, and represents the
sequence of arrival times for flows within this cluster. We compute the RPDE
metric for each time series using the same mathematical model described in [32].
PeerMinor uses this metric in order to assess the degree of periodicity for P2P
flows triggered by a given malware or benign P2P application. In addition to
the RPDE, PeerMinor also computes the mean and standard deviation (std) for
inter-flow arrival times in each cluster. The sequence of inter-flow arrival times
is derived from the time series by taking the difference between every couple of
consecutive flows. Indeed, the mean inter-flow arrival time is a linear metric, as
opposed to the RPDE metric that rather applies in the phase space [32].

Space-based features characterize the way a P2P node contacts other peers
in the network. P2P bots usually have a lower chunk rate compared to other
benign peers [21]. During bootstrap, infected nodes often use hard-encoded lists
of peers. Such lists imply a lower chunk rate, which makes it a distinctive feature
for P2P botnets. It is manifested through the number of IP addresses contacted
and the port distribution. We characterize space features using the mean and
std for the distributions of (new) IP addresses and destination ports contacted.
We obtain these distributions as follows. First we compute the duration of
each cluster, which is the lapse of time between the first and the last flow in

12



the cluster. We split this interval into n sub-intervals of equal lengths. We
compute, for each sub-interval, the number of new IP addresses and destination
ports, that is the IP addresses and destination ports not appearing in previous
sub-intervals. Then we compute the mean and std for these distributions and
we add these to our features vector.

The distribution of new IP addresses characterizes the chunk rate of a P2P
application. We also compute the distribution of IP addresses, which represents
the distribution of the number of remote IP addresses within n sub-intervals of
short duration, compared to the longer duration of a cluster. It characterizes
the number of IP addresses concurrently contacted by a P2P node at a given
time. We add the mean and std of this distribution to our features vector.

Flow size-based features characterize the number of bytes and packets trans-
ferred in P2P flows. They capture specific control operations for a given P2P
application [15]. We extract both unique and statistical flow size features. The
former represents the distribution of unique flow sizes against the number of
flows that have a given size in a cluster. We compute the mean and std for this
distribution and add these to our features vector. On the other hand, statistical
flow sizes characterize the regularity of flow size behavior over time within a
cluster. We group flows in a cluster into a time series according to their arrival
times. We further split this interval into n sub-intervals of equal lengths. For
each sub-interval, we compute the mean size for all flows in this interval, thus
obtaining a time-based distribution of mean flow sizes in a cluster. We compute
both mean and std of this new distribution and add these to our features vector.

P2P botnet inspection model. P2P clusters cannot be all used for training as
some of these are likely to appear in both malware and benign P2P flows. In
fact, while certain malware implements its own version of P2P protocols (e.g.
waledac), others use existing overlay protocols like overnet (e.g. Storm) and
Kademlia (e.g. TDSS). Clusters provided by the second category of malware
may share similar patterns with other benign P2P flow clusters, mainly for spe-
cific P2P control operations such as keep alive or route discovery, and so they
would share similar network footprints. These clusters should be thus discarded
prior to building the detection model. In fact, we want to keep only clusters
of P2P flows that implement P2P control operations that can be accounted
for during detection, such as P2P communication rounds, chunk rates and IP
distributions. Hence, PeerMinor implements a supervised pruning process that
eliminates malware control operations being shared with benign P2P applica-
tions. For each malware in our dataset, PeerMinor keeps only P2P control flows
that show distinctive features with respect to other benign P2P applications in
our initial learning set.

PeerMinor discards non-discriminatory clusters by cross-correlating our com-
bined set of malware and benign P2P clusters. Non-discriminatory clusters in-
clude flows triggered by malware and benign P2P applications that use the same
P2P protocols (e.g. emule, overnet) and that implement the same P2P function-
alities. We apply hierarchical clustering, using our features vector, in order to
build a dendrogram where leaf nodes are P2P clusters and the root node is a set

13



of all P2P clusters. Then we use the Davies-Bouldin index [30] to find the best
cut in the dendrogram, and so we obtain meta-clusters of malware and benign
P2P clusters. A meta-cluster corresponds to a node in the dendrogram, and that
includes either or both malware and benign P2P flow clusters. Discriminatory
meta-clusters include almost only malware or benign P2P clusters, and these
are kept as input to the training phase. We thus discard as non-discriminatory
meta-clusters all meta-clusters where the proportion of malware or benign P2P
flow clusters does not exceed a threshold τd. We experimentally set the value
of τd based on our P2P training set, as seen further in section 4.

We tested multiple learning algorithms in order to build our detection model,
including SVM, J48 and C4.5 decision tree classifiers [33, 34]. SVM provides an
extension to nonlinear models that is based on the statistical learning theory.
On the other hand, decision trees are a classic way to represent information
from a machine learning algorithm, and offer a way to express structures in
data. We evaluated the detection rates, including False Positives (FP) and
False Negatives (FN), for these available learning algorithms using our labeled
set of P2P clusters. We obtained higher detection accuracies using the SVM
classifier, and therefore we use this algorithm to build our detection model.

4. Experimentations

This section describes the design of our experiments and the dataset that
we used in order to build and validate our approach. First, we build a P2P
botnet detection model, including both inspection and classification, using a
learning set of malware and benign P2P applications. Then we evaluate three
properties of our system. First we validate our classification system, including
precision and recall, against three commercial AV solutions. Then we use a
cross-validation method in order to assess the accuracy of our P2P botnet de-
tection model. We also evaluate the contribution for the different features of
our model towards detection and we discuss results of these experiments using
our initial P2P learning set. Last of all, we evaluate the coverage of our system
through application to live netflow traffic.

4.1. Ground truth dataset

4.1.1. Malware training set

We obtained samples of malware traffic from a security company which col-
lects binaries using its own honeypot platform. Our dataset includes one hour
of network traffic for malware executed in a dynamic analysis environment.
Malware was granted open access to its command and control infrastructure,
including updates and command execution. We were provided malware traffic
as separate pcap files, labeled each with the corresponding malware md5 hash.
In fact we do not have access to malware binaries, but only to their network
traces, associated each with the md5 hash for the originating malicious code.
The dataset at our disposal includes network traffic for almost twenty thou-
sand distinct malware samples collected during a three months period, between
March and June 2012.

14



Although malware at our disposal belongs to a private dataset, we build a
strong ground truth using only malware samples that were correctly detected
and characterized by known AV solutions. Therefore, we use the virusTotal API
in order to qualify P2P malware in our dataset and to validate the results of
our experiments. We searched in virusTotal for md5 hashes in our dataset that
match with AV signatures associated with publicly known P2P malware families.
In order to obtain a valid ground truth for our experiments, we pick-up network
traces only when their md5 labels match with more than 10 known AV signa-
tures for the same P2P malware family in virusTotal. Note that AV scanners
usually assign conflicting signatures for the same malware sample. For example,
a same Sality malware has a kaspersky signature of Virus.Win32.Sality.aa

and a trendMicro signature of PE SALITY.BU. Therefore, we build our ground
truth malware classes by matching keywords associated with known P2P mal-
ware families, as shown in table 1. We further compare in this section our
malware families with signatures provided by three distinct AV scanners. Table
1 summarizes the six distinct P2P malware families that we identified within
our malware dataset. Note that after verification in virusTotal, we observed
that almost 60% of our dataset consists of Sality (v3 and v4). However, it also
includes significant flows for other P2P malware families.

Regarding the classifier module, we aim at experimentally validating three
properties using our P2P malware dataset. First, PeerMinor identifies small
malware families into a larger set of P2P malware. For instance, it accurately
identifies the ZeroAccess family, although it only constitutes 5% of our initial
learning set. PeerMinor performs well against imbalanced malware datasets be-
cause of its two stage classification model, including a one-class classification
stage that processes samples belonging only to the same family of malware. In
fact using supervised learning against imbalanced datasets often leads to over-
fitted models that are biased towards samples occurring more frequently in the
initial learning set. Therefore, PeerMinor implements first an unsupervised clus-
tering step using incremental K-means, and which separates malware samples
belonging to different families of malware. It then applies supervised learning,
using the one-class SVM classifier model, to each family of malware provided by
the unsupervised clustering process. Such double-deck classification approach
considerably reduces the impact of imbalanced datasets, as shown further in
this section. Second, PeerMinor identifies variants of the same malware family
that have different implementations of P2P protocol. We validate this property
using the example of Sality versions 3 and 4, that were correctly classified by our
system. Third, PeerMinor separates families that use the same P2P protocol,
but having different P2P signaling activities. It efficiently classifies samples of
Zeus v3 and TDSS malware, although they are based on the same Kademlia
protocol.

We tested our P2P filter against the initial malware dataset, using the ground
truth provided by P2P malware signatures in table 1. The DNS filter reduces up
to the third the initial number of malware samples. Indeed, it cannot discard
all non-P2P malware because there is multiple other reasons for malware to
operate outside the DNS system, including hard coded C&C addresses, scan

15



attempts and spam. Yet the flow size filter had little impact with only few flows
being discarded, and that mostly carry malware spam activities. Indeed the
short dynamic analysis time (1 hour) is not long enough for malware to trigger
P2P data flows. On the other hand, the P2P filter uses two distinct thresholds,
that are associated with the failed connection (τfc) and AS-based (τas) filters.
We experimentally configured the values for these thresholds using our ground
truth malware dataset. We were able to achieve 100% detection accuracy for
values of τas in the interval [0.1, 0.3] and τfc in the interval [0.14, 0.6]. We thus
conservatively set these thresholds to the values 0.2 and 0.3 respectively, using
our ground truth dataset in table 1. We collected a total number of 535 malware
samples that are classified into six distinct P2P malware families, as in table 1.

4.1.2. Benign P2P training set

We obtain benign P2P flows for our training set using traffic that we col-
lected from a well-protected corporate network. It includes netflow packets
collected during one month of activity for nearly 150 network terminals. Unfor-
tunately certain P2P applications such as bittorrent were banned due to policy
restrictions. We thus completed our training set by manually executing P2P
applications in a controlled environment. Then we applied our P2P filter in
order to discard flows that do not carry P2P signaling activity. We process net-
work flows separately for each single IP address, and we directly build clusters
of benign P2P flows that we can use as input to the inspector module. We ob-
tained a total number of 415 benign P2P clusters, associated with 53 distinct IP
addresses. Almost half of our benign P2P clusters included Skype flows (230),
but we also obtained other clusters such as EMule (43), Kademlia (37) and
Gnutella (35). We mostly obtained Skype flows mainly because the corporate
network is aimed for professional usage, and other P2P applications were being
occasionally used. On the other hand, we collected 379 benign P2P clusters
from manually executed P2P applications, including bittorrent, eDonkey and
Manolito. Our training set thus included 794 benign P2P clusters that we used
as input to our inspection model.

4.2. Malware classifier

4.2.1. Building malware families

We split the P2P malware dataset that we identified using the virusTotal
API into two separate groups. The first one includes 85% of our P2P malware
learning set, and that we used to build P2P malware families. The second group
includes the remaining 15% malware samples, and that we used to test and val-
idate our system. We randomly extracted the malware validation set from each
P2P malware family using the ground truth families in table 1. Hence, our
validation set included 85 samples extracted from all six P2P malware families.
We use the remaining 450 malware samples in order to build our malware classi-
fication system. The fifth column in table 1 summarizes the number of samples
for each malware family that we use to build our malware classification system.

The P2P classifier builds clusters of flows in order to group together malware
flows that implement the same P2P protocol and signaling activity. It applies

16



incremental k-means to the entire set of malware P2P flows, using the features
vector fα presented in section 3.2.2. The flow clustering module, applied to the
450 malware samples in our dataset, provided a total number of 28 P2P flow
clusters, including 22 clusters of UDP flows and 6 clusters of TCP flows. Table
2 illustrates examples of network features for a subset of 8 P2P flow clusters
identified by our system.

As in table 2, different signaling activities for the same P2P malware were
indeed classified into different clusters. For example, clusters 2 and 3 in table
2 included two separate signaling messages (Peer exchange and Peer announce-
ment) for the same Sality malware. As shown in table 2, Sality has different
average request sizes for its two P2P signaling activities (34 vs 20), and so they
were classified into different clusters. Clusters 1, 7 and 8 provide yet another
example for the Gnutella protocol. We obtained separate clusters for the query
and push signaling activities of the same Gnutella P2P protocol. They respec-
tively use UDP and TCP protocols, and they have different network features so
they were classified into separate clusters. Note that we may still obtain clusters
that implement the same P2P signaling activity and protocol (e.g. clusters 4
and 5 for the same uTorrent protocol). Nonetheless, these clusters show dif-
ferent P2P network features that characterize different implementations of the
same P2P protocol by different malware families.

We use the 28 flow clusters in order to build P2P footprints for malware
in our dataset. Malware footprints indicate the proportion of P2P flows for
a given malware that belong to each of the 28 P2P flow clusters. Table 3
illustrates examples of P2P footprints from two distinct P2P malware, Zeus v3
and ZeroAccess. Table 3 clearly shows how malware of the same family has
almost identical P2P footprints and so it would be grouped within the same
clusters. For example, malware of the Zeus v3 family has almost all of its P2P
signaling flows in cluster 16, while the few remaining flows belong to cluster 1.
On the other hand, malware of the ZeroAccess family has almost a third of its
P2P signaling flows in cluster 27, and the remaining two thirds in cluster 25.
These two malware families would be clearly separated into two clusters by the
malware classifier.

The classifier module uses malware footprints in order to build families of
P2P malware. It applies hierarchical clustering, using Python, and uses the
Davies-Bouldin index to obtain the optimal set of clusters. We obtained a total
number of 8 clusters, associated with 8 distinct P2P malware families. We
validate P2P malware families using the ground truth classification in table 1.

Six P2P malware clusters were clearly associated with each of the six mal-
ware families in table 1. In fact all Zeus v3, ZeroAccess and Kelihos malware
samples were classified into separate clusters respectively. We thus consider our
clusters to characterize the P2P network footprint of these distinct malware
families. On the other hand, samples of Sality malware were split into two sep-
arate clusters, including 295 and 37 samples in each cluster respectively. These
clusters are likely to include malware that respectively belong to versions v3
and v4 of the Sality family. Yet we couldn’t validate this assumption using our
ground truth in table 1 because of the conflicting AV signatures for versions of

17



Family Samples Period Proto Training Eval Flows P2P flows

Sality v3, v4 386 40 min Custom 335 51 105178 28071
Kelihos 41 10 min Custom 34 7 12906 4440
Zeus v3 35 30 min Kademlia 27 8 8523 4227
TDSS 40 – Kademlia 30 10 17680 4368

ZAccess v1 33 15 min Custom 24 9 14328 5676

Table 1: Malware samples by families of malware

Cltr Id Nb flows Proto P2P proto P2P activity Bs Br Pkts Pktr

1 205 UDP Gnutella Query 35 130 1 1

2 937 UDP Custom (Sality) Peer exchange 34 610 1 1

3 11944 UDP Custom (Sality) Peer announcement 20 600 1 1

4 1674 UDP uTorrent find node 450 970 3 3

5 1427 UDP uTorrent find node 300 630 2 2

6 1164 UDP Custom (Zeus) version request 200 645 2 2

7 5778 TCP Gnutella push 367 0 4 4

8 504 TCP Gnutella push 882 0 8 7

Table 2: Examples of malware P2P flow clusters detected by our malware classifier

Mlwr Clr 1 Clr 2 Clr 3..15 Clr 16 Clr 17..24 Clr 25 Clr 26 Clr 27 Clr 28

Zeus 1 0.07 0 0 0.93 0 0 0 0 0

Zeus 2 0.085 0 0 0.914 0 0 0 0 0

Zeus 3 0.03 0 0 0.97 0 0 0 0 0

Zeus 4 0.037 0 0 0.962 0 0 0 0 0

Zeus 5 0.071 0 0 0.928 0 0 0 0 0

Zeus 7 0.098 0.02 0 0.87 0 0.01 0 0 0

ZA 1 0.035 0.014 0 0 0 0.577 0.04 0.3 0

ZA 2 0.078 0.022 0 0 0 0.592 0 0.3 0.011

ZA 3 0.102 0.011 0 0 0 0.606 0.02 0.27 0

ZA 4 0.019 0.015 0 0 0 0.62 0.06 0.29 0.013

Table 3: Examples of P2P footprints for Zeus v3 and ZeroAccess families

18



Fmly Id Nbr Kaspersky McAfee TrendMicro

1 295
win32.Sality: 193

Win32.Spammy: 29
Unknown: 23

W32/Sality: 219
Downloader-CPY: 22

Unknown: 4

PE SALITY: 223
WORM KOLAB: 9

Mal Odra-5: 2
Unknown: 11

2 27
win32.Zbot: 25

Unknown: 2
PWS-Zbot: 27 Tspy Zbot: 27

3 24
Win32.Sefnit: 17
Win32.ZAccess: 7

Sefnit: 24
Troj Kazy: 13
Troj Sirefef: 7
Unknown: 4

4 32
Win32.Kelihos: 27

unknown: 5

Win32/Kelihos: 23
GenericBackDoor.xf: 8

unknown: 1

TROJ FAKEAV: 29
TROJ INJECTER: 3

5 37 win32.Sality: 37 W32/Sality: 37 PE SALITY: 37

6 30
Win32.TDSS:19
Win32.FakeAV: 11

FakeAlert-JM: 26
Trojan.Alureon:4

BKDR TDSS: 30

7 2
win32.Sality
win32.killAV

Win32/Nimnul
win32/Zbot

PE fujacks,PE nimnul

8 2
win32.Sality

unknown
unknown: 2 PE fujacks,PE down

Table 4: Comparison with kaspersky, McAfee and TrendMicro signatures

Kaspersky McAfee TrendMicro

Precision 83.16% 88.45% 86.5%

Recall 90.8% 89.31% 94.85%

Table 5: Precision and recall against the three AV scanners

the Sality malware. Therefore, in order to refine our ground truth, we checked
the update time for AV signatures that were matching each of the malware md5
hashes associated with the Sality malware. We would expect samples for the
version v4 of this malware to be more recent in general than samples of version
v3. We admit that AV update times do not formally validate our classification
because we cannot rule out the possibility of newer malware samples imple-
menting version 3 of P2P protocol for this malware. However, signature update
times still provide evidence of different version implementations for this same
malware family. Yet we observed that 80% of malware in the smaller Sality
P2P cluster has newer update times than all other samples in the larger P2P
cluster. We believe this is a clear evidence of two families of the Sality mal-
ware, that we associate with versions 3 and 4 of this malware family. In fact,
versions v3 and v4 of the Sality malware have different implementations of their
P2P signaling protocols, and so AV signatures cannot correctly classify these
two malware families based on their system behavior. Our system thus offers a
complementary approach that classifies P2P malware based on its network-level
behavior, which cannot be easily characterized by host-based signatures.

Finally, we obtained two additional clusters, both including two malware
samples that belong to different malware families in table 1. These are clearly
outliers and so they were misclassified by our system. PeerMinor was indeed
able to correctly classify 446 out of 450 malware samples in the initial training
set. It clearly outperforms current AV signatures as it achieved near 0.8%
misclassification rate.

19



4.2.2. Comparison with AV signatures

This section validates P2P malware families provided by our system through
comparison with signatures from three AV scanners, including McAfee, kaspersky
and Trend Micro. Note that we compare in this section only the malware classi-
fication capability of our system with other AV scanners. The detection coverage
of our system is further discussed in section 4.3. In fact, our system proposes
a behavioral approach that classifies P2P malware on the fly while executing
in a dynamic analysis environment. We need to verify the cohesion of our P2P
malware families using a learning set of known and already qualified malware
dataset. For each malware family created by our system, we collect AV signa-
tures for all samples of this family. We compute the precision and recall of our
system in order to validate the consistency of our malware classification with
respect to all three AV scanners. Experimental results prove the ability of our
system to accurately classify P2P malware using only network level information,
with no a-priori knowledge about the system behavior of malware.

Table 4 compares malware families provided by our system with signatures
from three AV scanners. As shown in this table, AV scanners assign different
signatures for samples of the same malware families. These signatures usually
constitute different aliases for the same malware family. In order to have com-
mon evaluation criteria for all three AV scanners, we used the spyware remove
website3 in order to associate all aliases of the same malware families. For ex-
ample, the signature win32.spammy for the first malware family in table 4 is
identified by spyware remove as a kaspersky alias of spammer.sality.a, and
so we consider it as part of the sality family.

Table 5 summarizes the classification accuracy and recall against the three
AV scanners. Classification accuracy is computed as the average precision rate
for all six P2P malware families identified by our system. We introduce the
precision rate for a P2P malware family as the ratio of malware samples that
have the same predominant AV signature with respect to the total number of
samples in this family. The classification recall is computed the same as for
the precision rate, excluding samples that are unknown for AV scanners. As
in table 5, our system has almost stable precision and recall against all three
AV scanners. It enhances by at least 11.5% the malware classification for AV
scanners (in case of McAfee which provides the highest precision rate), based on
our ground truth in table 1. It also differentiates samples of the same malware
family that implement different variants of the same P2P protocol, as for the
sality malware which is indeed represented by the same signature by all three
AV scanners. Yet it replaces current AV signature aliases with a common be-
havioral malware classification, as in the example of the third malware family
identified by our system in table 4. It provides a common classification for mul-
tiple aliases of the same ZeroAccess malware family, including win32.ZAccess,
win32.sefnit, troj Kazy and troj Sirefef aliases.

3http://www.spywareremove.com/

20



Sality v3 Sality v4 ZeroAccess kelihos TDSS Zeus v3

Accuracy 99.3% 99.1% 94.2% 95% 98% 100%

Table 6: Classification accuracy by malware family

4.2.3. Inline malware classification

This section demonstrates the classification phase of PeerMinor, which clas-
sifies P2P malware on-the-fly using its network footprint. We implement the
cross-validation method that consists of extracting an evaluation dataset prior
to building malware classifiers, and then to use this dataset in order to test and
validate our classifiers. We reiterated the cross-validation process using differ-
ent evaluation sets, each time randomly extracting 15% of our malware dataset
before we build our one-class classifiers. In order to guarantee the soundness of
our experiments, our evaluation set had always the same malware composition,
as shown in the sixth column in table 1.

We apply the P2P flow filter and we build clusters of P2P flows using the
network traces for each sample in our malware validation set. Then we build
a P2P footprint for each sample using its P2P flow clusters. We use malware
footprints as input to the one-class classifiers for each of our six malware families.
Our system achieved near 97.6% classification accuracy, based on the ground
truth classification in table 1. The detailed results of our experiments for each
malware family are illustrated in table 6.

Samples of Zeus v3 and TDSS malware families were accurately classified
with almost no false positives. False positives in case of Sality malware were all
due to mis-classifications between the different versions of this family. Note that
100% of Sality malware in our dataset was correctly classified by our system, and
almost 99.2% of these samples were classified with the appropriate version of this
family. In fact we couldn’t formally validate our classification of Sality versions
v3 and v4 because AV scanners do not constitute a reliable ground truth. Hence,
we used update times for AV detection signatures in order to separate between
different versions of Sality malware. On the other hand, PeerMinor has correctly
classified only 94.2% of kelihos malware mostly because of the small number of
samples in our learning set. Yet PeerMinor outperforms most AV scanners
with an overall classification accuracy of 97.6%, while only relying on network
features with no need of malware binary analysis.

4.3. Botnet inspection and detection

During the training phase, the inspector module builds clusters of flows for
each malware or benign P2P application using flows provided by the P2P filter
module. To the purpose of this paper, we processed traffic for the 535 P2P
malware samples that constitute our ground truth learning set. We applied
incremental k-means, using the same threshold values introduced in section
3.2.2, and we obtained a total number of 1,445 malware P2P flow clusters. On
the other hand, we obtained benign P2P flow clusters by applying the same

21



False positives rate

0 0.05 0.1 0.15 0.2
0.9

0.92

0.94

0.96

0.98

1.00

(a) ROC curve for different pruning
thresholds τd

60

80

100

Accuracy

0

20

40

T S F T-S T-F S-F T-S-F

Accuracy
FP
FN

(b) Contribution of features towards
detection

Figure 2: Evaluation of the P2P botnet inspection model

process to benign P2P flows that we obtained from the well protected corporate
network. As described in section 4.1.2, our learning set of benign P2P flows
included 794 P2P flow clusters that we used to train our detection model.

4.3.1. Training the inspection model

Our labeled P2P training set included 2, 239 P2P clusters, with up to 1, 445
malware and 794 benign P2P clusters. PeerMinor applies a pruning process that
aims at discarding P2P clusters being shared between both malware and benign
P2P flows. Hence, it cross-correlated the initial set of 2, 239 P2P clusters, using
hierarchical clustering, and obtained 42 meta-clusters. We observed that 35
out of the 42 meta-clusters include up to 93% of only benign or malware P2P
flows, such as 7 meta-clusters which clearly included Sality flows, 4 meta-clusters
included Waledac, and 9 meta-clusters included Skype flows. We believe that
these are discriminatory meta-clusters as they clearly characterize malicious and
benign P2P activity. On the other hand, 7 meta-clusters included both malware
and benign flows, and so they are discarded as non-discriminatory clusters. For
instance, and regarding the Kademlia protocol, 10 meta-clusters were found to
include Kademlia-like P2P clusters. In fact Kademlia protocol includes 4 mes-
sage types: ping, store, find node and find value. 7 meta-clusters included
more than 93% of only malware or benign P2P flows. These meta-clusters in-
cluded strictly find node and find value messages. Malware and benign P2P
clusters were falling into different meta-clusters mostly because of their different
chunk rates. The three remaining meta-clusters included between 60 and 70%
of malware clusters. These clusters included mainly ping requests, which are
dropped by the pruning module as being non-discriminatory flows. We obtained
as output to this process a training set of 1, 679 P2P clusters, including 1, 192
malware clusters and 487 benign P2P clusters.

Evaluating detection accuracy. In order to evaluate the detection accuracy of
our system, we implemented a cross validation method, using our labeled ground
truth dataset. We split our training set into two categories: 80% of malware

22



samples that we use for training, and the remaining 20% that we use for evalua-
tion. Yet for the 53 IP addresses that were using P2P protocols in the corporate
network, we randomly extracted 10 IP addresses from our training set so we can
use them for evaluation. Then we merged traffic for our 20% malware evalua-
tion set with random IP addresses that we extracted from the corporate network
traffic. We further use our training set of malware and benign P2P traffic as
input to the P2P inspector module, and then we applied our cluster pruning
module with different values of the pruning threshold τd. We obtained for each
value of τd a different number of labeled P2P clusters that we use to train our
SVM classifier. We evaluated the detection models that we obtained using the
validation dataset, including traffic from the corporate network merged with the
traffic from the 20% remaining malware samples. We measured the detection
rate and the false positives rate for each value of τd, and that we illustrate with
the ROC curve in figure 2a.

As in figure 2a, a high value for τd - i.e. closer to the y-axis - leads to lower
detection rates and less false positives. In fact, a high value for τd discards more
clusters during the learning process, and so it reduces the coverage of PeerMinor.
On the other hand, lower values for τd allows less discriminatory clusters to go
through the pruning process. These would reduce the accuracy of PeerMinor,
leading to a higher false positives rate and a lower detection accuracy. We found
a linear increase in the detection rates for values of τd lower than 93%. Yet we
obtained the best detection rates for values of τd in the interval [90 − 93%],
including 97% detection rate and 1.6% false positives.

Contribution of features towards detection. We also used the cross-validation
method to evaluate the contribution of our features towards detection. In fact
we aim at evaluating the relevance of our features in characterizing and detect-
ing malicious P2P signaling activity on the network. Hence, we built different
detection models by separately using each class or combinations of these classes,
and then we evaluated the detection accuracy, including false positives and neg-
atives, as illustrated in figure 2b.

Our model achieves almost 97% detection accuracy when combining all
classes of features. When evaluated separately, space-based features (S) pro-
vided the best detection accuracy (93%). We believe this is due to the fact that
our learning set includes netflow packets collected during only 1 hour of malware
execution time. Hence, time-based features provided a lower accuracy because
the execution time is not long enough to accurately characterize periodicities in
P2P control flows. On the other hand, size-based features provided low detec-
tion accuracy when solely used to build the detection model, almost with 20%
false positives rate. This was not surprising because malware may still bypass
size-based features by adding noise or paddings to P2P control flows. Although
only few malware currently uses such techniques, we observe that size-based
features cannot be used as standalone features for P2P botnet detection. As
opposed to time and space features, size-based features may still be bypassed
without modifying the underlying overlay protocol.

23



4.3.2. P2P botnet detection using ISP flows

The test against ISP flows was indeed challenging because we lack the ground
truth about the nature of detected infections. We trained our detection model,
including malware classification and inspection, with all P2P clusters at our
disposal, and we used the value of τd that provided the best detection accuracy.
The ISP flows included 3 hours of anonymized netflow for almost 4, 347 distinct
IP addresses, collected at a peek traffic rate. The DNS filter was applied at the
source, and so we were provided only network flows not preceded with successful
DNS resolutions. We split this traffic into one hour length intervals, which
corresponds to the malware execution time in our dataset. Then we applied our
P2P filter and botnet detection model on traffic in each time interval. Our filter
identified an overall number of 148 distinct IP addresses. In order to validate our
P2P filter, we also obtained from the ISP a list of the anonymized IP addresses
that were found to be implementing P2P applications in our netflow trace, and
that were detected using proprietary P2P protocol signatures. Although these
signatures do not formally validate our approach, they still provide a ground
truth to evaluate our results. P2P signatures detected 169 distinct IP addresses
that implement P2P applications, including 21 IP addresses not detected by
our filter. In fact 18 of these addresses triggered less than 10 P2P flows. They
were discarded by our AS-based filter because of the low AS ratio for these IP
addresses. We verified with the ISP the origin of these flows since IP addresses
for the traffic at our disposal were all anonymized. We found that these were
mostly signaling flows for external IP addresses being routed through the ISP
network. Therefore, we would not consider them as false negatives. On the other
hand, the 2 remaining IP addresses detected by the P2P signatures were indeed
false negatives. They included utorrent P2P over HTTP flows, and were also
discarded by the AS-based filter most likely because these P2P applications were
dormant during the observation window. In fact we observed mostly incoming
flows, but there were relatively little outgoing P2P flows for these IP addresses.

We processed P2P flows extracted by our filter using the P2P inspector in
order to detect infected P2P bots. Flow clustering implemented by the inspector
module provided an overall number of 815 P2P flow clusters. Yet it identified 11
malicious flow clusters associated with 3 distinct IP addresses. Since traffic was
all anonymized, we validated our approach using public IP blacklists4. In fact
we consider a cluster to include malware P2P flows when at least 20% of remote
IP addresses in this cluster appear in public backlists. Indeed we identified
using these blacklists 4 netflow clusters as being malicious, all associated with
the same IP address. We thus consider this as a strong evidence of a malware
infection, and so it is a true positive. Unfortunately we couldn’t validate the
7 remaining clusters using the publicly available blacklists, and so they are
likely to be misclassified by our system. We thus achieved 0.4% false positives,
associated with two distinct IP addresses during 3 hours of traffic monitoring
for 4, 347 distinct IP addresses, which is a fairly reasonable number of alerts to

4RBLS is a free API to check multiple public IP blacklists - http://www.rbls.org/

24



be handled by the system administrator.
The P2P detection module further elaborated a footprint for the infected

IP address using the 4 netflow clusters and matched this footprint with the
one-class classifiers provided by the classifier module. The resulting footprint
was very close to the one for the sality v4 malware and so it was classified
by our system as a Sality v4 infection. We manually checked the P2P netflow
traces for the given infected IP address. They mainly included UDP flows,
where UDP is the main transport protocol for Sality. P2P flows mostly have
destination UDP ports above 2200, which is another property of Sality malware
according to Symantec [35]. Although the elements at our disposal still provide
a convincing evidence, we admit that they do not formally validate an infection
by the Sality malware. Unfortunately, we couldn’t formally check the infection
status on the victim node as the IP addresses were all anonymized and there
were no possibility to check on the end node.

5. Discussion

5.1. Malware evasion

Our system detects and classifies malware using statistical features such as
flow size, chunk rate, periodicities and botnet distribution. These features are
used by both inspector and classifier modules in order to detect and qualify on-
going malware infections. Therefore, we would not be able to accurately detect
and characterize P2P bots if the attacker modifies P2P communication inter-
vals, contacts a larger set of peers, or uses random paddings in its malware P2P
traffic. Using such techniques could modify statistical consistency in malware
P2P flows and so it makes detection more difficult using our features. Although
being technically possible, these techniques require a greater effort from mal-
ware developers in order to modify their P2P C&C toolkits. They also increase
overhead and reduce botnet stability, which makes botnet management more
difficult. Yet botnets that use these techniques would no longer be able to dis-
simulate within benign P2P flows, and so they will be exposed to other malware
detection techniques.

5.2. P2P failover mechanisms

Our system only detects and classifies malware that uses P2P protocols as a
primary C&C channel. In fact malware may also use P2P protocols as a failover
mechanism in case it cannot access its primary C&C channel. Therefore it may
not trigger P2P activity during dynamic sandbox analysis, and so it would not
contribute to building P2P malware classifiers. In [36], authors propose a dy-
namic approach that enables to detect secondary C&C channels during malware
execution in a sandbox. They propose a mechanism to intercept primary C&C
channels and to force malware to engage in a failover strategy. Using techniques
such as [36] enables to trigger P2P failover strategies so we can take these into
account in our detection model. These techniques usually apply during malware
sandbox analysis and so they are out of scope in this study.

25



5.3. Modularity and elasticity

PeerMinor has a modular and extensible framework that makes easy to add
new families of malware to its knowledge database, without altering features for
other malware already represented in our system. In fact the classifier module
just builds a one-class classifier for the new malware family and adds it to its
knowledge base without modifying other existing classifiers. On the other hand,
detection features used by the inspector module are built separately for each
malware sample. The P2P inspector transparently extracts features for new
malware families, without altering other features for malware already known
to our system. The P2P inspector further builds a new detection model by
applying supervised learning to the new extended set of features. Note that
the generation of new detection models is a lightweight process compared to
the greedy flow clustering and features extraction mechanism. The latter is not
affected while adding a new malware family, and hence detection features are
computed only once for every malware family in our database.

5.4. Malware classification

Anti-virus solutions often use proprietary malware descriptors and assign
conflicting signatures for samples of the same malware family. Indeed malware
classification is becoming a tedious task because of multiple trends in today’s
cyber threats. Firstly, cyber attackers nowadays collaborate through the black
Internet market. They are increasingly sharing source code and using common
malware development toolkits. Therefore, malware families oftentimes show
similar behavior and use shared exploit kits, which makes difficult to separate
between samples of different malware families using only host-based artifacts.
On the other hand, modern malware may also download and execute a variety
of other malware on the same infected terminal. One example is the sality mal-
ware, whose main goal is also to download and execute other malware or attack
vectors. Hence, it ends up with multiple malware samples being collocated on
the same infected node [35].

Since the gap is being increasingly reduced between samples of different mal-
ware families, malware classification using only host-based features is becoming
an extremely difficult and error-prone task. Our experiments shown in table 4
clearly illustrate how AV solutions assign conflicting malware signatures. Yet
even the same AV scanner may assign different and unrelated signatures for
samples of the same malware family. Therefore, PeerMinor outperforms cur-
rent AV solutions as it provides a malware classification approach that rather
observes the network behavior of P2P malware. We believe that malware be-
longing to the same P2P botnet family implements the same C&C protocols and
uses the same encryption suites, otherwise P2P bots would not be able to cor-
rectly communicate and share commands on the network. PeerMinor accounts
on these observations in order to group together malware samples that belong
to the same P2P botnet family. It reliably classifies P2P malware using invari-
ants associated with the way bots communicate and share commands through
the overlay network. Our experimental results prove that PeerMinor reliably

26



classifies samples of the same P2P botnet family using only network features,
as opposed to current AV solutions.

6. Conclusion

This paper presented PeerMinor, a fully behavioral system that detects and
qualifies P2P malware infections inside a given network perimeter. PeerMinor
is a hybrid system that combines both misuse and anomaly-based malware de-
tection techniques. By separating its inspection and classification capabilities,
PeerMinor detects both known and unknown malware infections. It associates
bot infections with known malware families where possible. Unknown malware
infections are identified as such by our system, and so they can be submitted to
the administrator for a deeper analysis.

Through its double-deck inspection and classification approach, PeerMinor
rapidly discards benign P2P nodes and further classifies malicious P2P nodes
in order to provide a comprehensive cartography of malware infections inside
a given network perimeter. Experimental results on about 535 distinct P2P
malware samples confirm the effectiveness of our system, and show that it can
reliably detect and characterize ongoing malware infections.

References

[1] G. Ollmann. Botnet communication topologies: Understanding the intri-
cacies of botnet command-and-control. In Damballa White Paper, 2009.

[2] A. Kapoor and R. Mathur. Predicting the future of stealth attacks. In
Virus Bulletin, 2011.

[3] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos. Is p2p
dying or just hiding? In IEEE GLOBECOM, volume 3, pages 1532–1538,
2004.

[4] P. O’Kane, S. Sezer, and K. McLaughlin. Obfuscation: The hidden mal-
ware. In IEEE Security & Privacy, pages 41–47, 2011.

[5] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif. Misleading worm
signature generators using deliberate noise injection. In Proc. SSP, 2006.

[6] Trusteer. No silver bullet: 8 ways malware defeats strong security con-
trols. Whitepaper accessible on http://www.trusteer.com/resources/white-
papers, 2012.

[7] C. Rossowz, D. Andriessez, T. Werner, B. Stone-Grossy, D. Plohmannx,
C. J. Dietrich, and H. Bos. Sok: P2pwned - modeling and evaluating the
resilience of peer-to-peer botnets. In IEEE Symposium on Security and
Privacy (SSP), 2013.

27



[8] J. B. Grizzard, V. Sharma, C. Nunnery, and B. B. Kang. Peer-to-peer
botnets: Overview and case study. In Proceedings of USENIX HotBots,
2007.

[9] K. Aberer and M. Hauswirth. An overview on peer-to-peer information
systems. In Proceedings of the 4th workshop on Distributed Data and Struc-
tures, 2002.

[10] B. Krishnamurthy and J. Wang. Traffic classification for application specific
peering. In Proc. 2nd SIGCOMM Wrkshp on Internet measurment, pages
179–180, 2002.

[11] D. Dittrich and S. Dietrich. P2p as botnet command and control: a deeper
insight. In Proceedings of the 3rd International Conference On Malicious
and Unwanted Software, 2008.

[12] D. Stutzbach and R. Rejaie. Understanding churn in peer-to-peer networks.
In Proc. ACM SigComm Internet Measurement Conference, 2006.

[13] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov. Botgrep:
Finding p2p bots with structured graph analysis. In Proceedings of the 19th
USENIX Security, 2010.

[14] C.-C. Wu, K.-T. Chen, Y.-C. Chang, and C.-L. Lei. Detecting peer-to-peer
activity by signaling packet counting. In Proceedings of ACM SIGCOMM,
August 2008.

[15] T. Karagiannis, A. Broido, N. Brownlee, k claffy, and M. Faloutsos. File-
sharing in the internet: A characterization of p2p traffic in the backbone.
In UC Riverside technical report, November 2003.

[16] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure: Finding mali-
cious domains using passive dns analysis. In Proceedings of the 18th Net-
work and Distributed System Security Symposium (NDSS), 2011.

[17] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel. DISCLO-
SURE: Detecting Botnet Command and Control Servers Through Large-
Scale NetFlow Analysis. In Proceedings of the 28th Annual Computer Se-
curity Applications Conference Network and Distributed System (ACSAC),
2012.

[18] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Building
a Dynamic Reputation System for DNS. In Usenix Security Symposium,
2010.

[19] J. Francois, S. Wang, R. State, and E. Thomas. Bottrack: Tracking botnets
using netflow and pagerank. In IFIP Networking, 2011.

[20] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clustering analysis of
network traffic for protocol and structure independent botnet detection. In
Proceedings of the IEEE Symposium on Security and Privacy (SSP), 2008.

28



[21] T.-F. Yen and M. K. Reiter. Are your hosts trading or plotting ? telling p2p
file-sharing and bots apart. In 30th Conf. Distributed Computing Systems,
2010.

[22] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo. Detecting stealthy
p2p botnet using statistical traffic fingerprints. In Proc. 41st DSN, 2011.

[23] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li. Peerrush: Mining for
unwanted p2p traffic. In 10th Conference on Detection of Intrusions and
Malware & Vulnerability Assessment, DIMVA, 2013.

[24] Y. Hu, D.-M. Chiu, and J. C. S. Lui. Profiling and identification of p2p
traffic. In Computer Networks, volume 53, pages 849–863, 2009.

[25] B. Claise. Cisco systems netflow services export version 9. RFC 3954, Oct.
2004.

[26] N. Kheir and C. Wolley. Botsuer: Suing stealthy p2p bots in network
traffic through netflow analysis. In Proceedings of the 12th International
Conference on Cryptology and Network Security (CANS), 2013.

[27] N. Kheir and X. Han. Peerviewer: Behavioral tracking and classification
of p2p malware. In Proccedings of the 5th international symposium on
Cyberspace Safety and Security (CSS), 2013.

[28] Anubis: Analyzing unknown binaries. http://anubis.iseclab.org, 2011.

[29] C. Willems, T. Holz, and F. Freiling. Cwsandbox: Towards automated
dynamic binary analysis. In IEEE Security & Privacy, 2007.

[30] D. I. Davies and D. W. Bouldin. A cluster seperation measure. In IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1979.

[31] S. S. Khan and M. G. Madden. A survey of recent trends in one class
classification. In Artificial Intelligence and Cognitive Science, volume 6206
of LNCS, pages 188–197, 2010.

[32] M. A. Little, P. E. McSharry, S. J. Roberts, D. A. Costello, and I. M.
Moroz. Exploiting nonlinear recurrence and fractal scaling properties for
voice disorder detection. In Biomedical Engineering Online, volume 6, 2007.

[33] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge University
Press, 2000.

[34] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, 1993.

[35] N. Falliere. Sality: Story of a peer-to-peer viral network. In Symantec
Security Response Version 1.0, 2011.

29



[36] M. Neugschwandtner, P. M. Comparetti, and C. Platzer. Detecting mal-
ware’s failover c&c strategies with squeeze. In Proceedings of the 27th
Annual Computer Security Applications Conference (ACSAC), 2011.

30


