PeerViewer: Behavioral Tracking
and Classification of P2P Malware

Nizar Kheir and Xiao Han

Orange Labs, Paris

Abstract. To keep pace with the rampant malware threat, security an-
alysts operate tools that collect and observe malicious content on the
internet. Since malware is robust against static analysis, dynamic en-
vironments are being used for this purpose. They use automated plat-
forms that execute malware and acquire knowledge about its runtime
behavior. Today, malware analysis platforms are powerful in character-
izing the system behavior of malware. However, little research is being
done to automatically charaterize malicious code according to its net-
work communication protocols. Yet this is becoming a real challenge as
modern botnets increasingly adopte hybrid topologies that use custom
P2P protocols for command and control.

This paper presents PeerViewer, a system that automatically classifies
malware according to its network P2P behavior. Nowadays P2P malware
either uses variants of known P2P protocols, or it builds its custom P2P
protocols as for Sality and zeroAccess. PeerViewer builds classifiers for
known P2P malware families. Then it builds a network footprint for
malicious code running in a sandbox, and compares this footprint with
those for known P2P malware families. It associates malicious code with
a known botnet family where possible, or it notifies the security analysts
of a new or unknown P2P malware family, so it can be considered for a
deeper analysis. Our experimental results prove the ability of PeerViewer
to accurately classify P2P malware, with a very low false positives rate.

1 Introduction

Over the past decade, malware has infected every corner of the internet, with
no signs of it abating. So far it became the root cause for many security prob-
lems such as spam, denial of service and data theft; yet it is branching on social
networks and mobile devices [3]. As long as malware is growing rampant, it
ecompasses a range of threats where botnets constitute the most widespread
type today. These are networks of infected nodes controled by a single attacker
through a common Command and Control (C&C) network. Today, botnet track-
ers mostly use dynamic analysis environments where they execute malware in
order to learn about its malicious techniques [2,5,13,21,22]. Whichever means
they use to collect malware (e.g. traffic sampling, honeypots, monitoring phish-
ing emails), security analysts are being overwhelmed with a huge number of
malware samples daily [20]. Most of these samples are polymorphic variants of

G. Wang et al. (Eds.): CSS 2013, LNCS 8300, pp. 282-298, 2013.
© Springer International Publishing Switzerland 2013

PeerViewer: Behavioral Tracking and Classification of P2P Malware 283

known malware families, thus urging researchers to propose dynamic and auto-
mated malware classification models [25]. In fact variants of the same malware
family share typical behavioral patterns that reflect their origin and purpose. Au-
tomated classification models thus discard samples that are variants of known
malware families, creaming off new malware that would be further submitted to
a deeper analysis. They observe malware runtime features such as system calls,
registries and memory in order to build appropriate behavioral classifiers.

Current malware analysis tools mostly operate at the system level. They build
behavioral patterns that apply to host-based malware detection and diagnosis.
Yet they provide only a raw description of malware network behavior, usually
limited to domain names, supported protocols and callbacks. While this level
of information enables detecting and neutralizing malware that uses centralized
botnet architectures, it has proven to be insufficient against hybrid and dis-
tributed botnets. With malware increasingly adopting hybrid C&C topologies,
current systems are struggling with their fight against botnets [10,15]. For ex-
ample, the recent switching of Zeus to a hybrid C&C topology made Zeustracker
unable to produce exact C&C domain block lists [1].

Hybrid botnets have network patterns and behaviors that are clearly different
from centralized botnets. They usually operate outside the DNS system, which
makes domain block lists irrelevant. They use custom P2P protocols, as opposed
to centralized botnets that mostly use HTTP for command and control. Hence,
behavioral classification based on malware HTTP patterns is no more appropriate
against P2P botnets [22]. Yet hybrid botnets use a wide range of P2P protocols,
each one implementing its own set of messages such as keep-alive, route discovery,
data search and broadcast. Besides, botnet P2P flows are usually encrypted and
transmitted over TCP and UDP alike, which makes difficult to classify malware
P2P flows based on the message types they are carrying. Therefore, the network
behavior of P2P malware during dynamic analysis would be no more than a
bunch of encrypted flows, with no clear evidence about their nature and remote
destinations. To the best of our knowledge, it is yet unclear how we can assign
malicious code to a common P2P malware family while observing its metwork
behavior during dynamic analysis.

This paper presents PeerViewer, a system that automatically classifies P2P
malware according to its network behavior. PeerViewer uses a learning set of
known P2P malware families such as Sality, Zeus, TDSS and zero access
[14,23,26]. Tt uses machine learning techniques in order to build a network based
classifier for each family of P2P malware. It further builds a network footprint of
P2P malware when executed in a dynamic analysis environment, and checks this
footprint against known P2P malware classifiers. PeerViewer assigns the mali-
cious code being analyzed to the appropriate P2P malware family where possible,
or it notifies the security analysts of a new or yet unknown P2P malware family.
In the latter case, the malware can be considered for a deeper analysis as it may
reveal new trends in P2P botnet activity.

Through its automated and dynamic classification of P2P malware,
PeerViewer offers two main contributions. First, it reduces overhead for malware

284 N. Kheir and X. Han

Malware P2P Malware Malware P2P P2P Malware
traces traces Flow Classes Families

Family 1 Family 2

»/ P2P Flow Filter L,7/P2P Flow Clustering /_‘f L»/Pzp Malware Classifier

(© Malware network flow not carrying a P2P signaling activity

O O <A Malware P2P flows carrying different types of signaling messages and/or associated with malware P2P activity

Fig. 1. Overview and workflow of PeerViewer

analysts by pinpointing only new P2P malware to be considered for further in-
vestigation. Second, it provides behavioral detection models that can be used to
detect P2P bots and associate them with known or new P2P malware families.
Our experimental results prove the ability of our system to accurately classify
P2P malware, with only very few false positives.

This paper will be organized as follows. Section 2 presents PeerViewer and
provides an overview of its architecture. Section 3 describes more in details the
different modules that constitute our system. Section 4 details our experiments
and results. Section 5 discusses the limitations of our system and provides future
work. Section 6 presents related work, and section 7 concludes.

2 System Overview

PeerViewer builds families of P2P malware based on their network behavior
when executed into a dynamic analysis environment. It aims at automatically
classifying malware that uses known P2P protocols, and to cream off malware
that implements new P2P protocols so it can be considered for further anal-
ysis. PeerViewer operates in two phases, the buildup phase and the detection
phase. During buildup, it builds P2P classifiers using a training set of malware
belonging to several P2P families. PeerViewer has a modular framework that
makes possible to add new P2P classifiers when new P2P malware families are
discovered. During detection, PeerViewer observes malware traffic and builds a
network P2P footprint for each malware sample. It uses this footprint in or-
der to associate malware with a known P2P family where possible. Otherwise
PeerViewer notifies the security analysts about a new malware that belongs to
a yet unknown P2P family.

As in figure 1, PeerViewer includes three separate modules. The P2P flow
filter implements several heuristics which aim to discard malware that does not
show any P2P activity during analysis. For instance, the rate of failed connec-
tion attempts is usually used as a way to detect P2P applications. Therefore,
our filter discards malware whose rate of failed connection attempts does not
exceed a given threshold. It also uses other heuristics such as flows initiated
after successful DNS requests, number and geographical distribution of remote

PeerViewer: Behavioral Tracking and Classification of P2P Malware 285

contacted IPs. Our experimental results prove that our filter is indeed effective
in eliminating non-P2P malware, with almost no false positives.

Remaining flows for P2P malware in our dataset are used as input to the flow
clustering module. It groups together malware flows that are likely to implement
the same P2P functionality and that use the same P2P protocol. The flow-size
distribution for P2P signaling activity shows frequent flow sizes that are associ-
ated with specific P2P message types [7,18]. Malware that implements the same
P2P protocol and belongs to the same P2P botnet topology would have the same
P2P signaling activity, thus resulting in similar flows when observed at the net-
work level. PeerViewer uses unsupervised clustering in order to group together
similar malware flows that are likely to implement the same P2P activity. The
flow clustering process uses high-level malware traffic features such as flow size,
number of packets, bits per packet, and flow duration. The output of this process
is a multiple set of clusters, each one including P2P flows triggered by multiple
malware samples, but carrying the same P2P signaling activity (e.g. keep-alive,
route discovery, search request, push data) and protocol.

Malware of the same family has its P2P flows grouped within the same clus-
ters because they carry the same P2P signaling activities. The malware classi-
fier module uses P2P flow clusters in order to build families of malware that
implement the same P2P protocol. In fact, PeerViewer builds a P2P footprint
Fo{ci}™, of size m for each malware M, in our initial learning set, and which
specifies the rate of malware P2P flows within each cluster {c¢;}7,. In other
terms, the feature F,{cx} would be set to 0 if malware M, has no flows in
cluster ¢, and it will be set to 1 if it has all its P2P flows in ¢;. PeerViewer
uses malware footprints as a training set to build P2P malware clusters, each
cluster representing a new P2P malware family. Hence, malware that belongs
to the same family implements the same P2P protocols and has the same P2P
botnet topology.

We evaluated our behavioral P2P malware classifier against malware sig-
natures for three anti-virus solutions. Our experiments prove that PeerViewer
builds malware P2P families with a very high accuracy. It further builds a clas-
sifier for each P2P malware family, so it can be used to classify P2P malware
on-the-fly. PeerViewer assigns a malware sample to the family that best fits its
network footprint. Malware that matches with any of the P2P malware families
in our training set belongs to an unknown family. It is thus submitted to the
security analyst for a manual inquiry.

3 System Description

This section describes the architecture and workflow of PeerViewer, including
the process and tools that it uses to build and classify P2P malware families.

3.1 Malware P2P Flow Filter

Malware P2P filter uses heuristics that select P2P malware and discard flows that
do not carry P2P signaling activity. These heuristics characterize a distributed

286 N. Kheir and X. Han

P2P activity using high-level network behaviors. In fact, P2P traffic has multiple
characteristics that are clearly different from other centralized network commu-
nications. For instance, P2P networks constitute unstructured topologies where
P2P nodes may constantly join and leave the network. This phenomenon results
in a high rate of failed connection attempts, which is a distinctive feature of P2P
activity. Our filter implements the following features.

DNS Filtering is commonly used to discard non-P2P traffic. Nodes in a P2P
network operate outside the DNS system [4]. They search for other peers
using routing tables in the overlay network, without prior DNS requests.
Although access to a central server through DNS resolution is possible at
bootstrap, nodes further communicate directly using IP addresses, and access
to the DNS service is usually no longer required. Therefore, PeerViewer
discards malware flows initiated after a successful DNS resolution.

Failed Connection Filter processes flows not eliminated by the DNS filter.
It discards non-P2P malware using the rate of failed connection attempts,
which characterizes the independent arrival and departure by thousands of
peers in the network. We consider as a failed connection attempt all unidi-
rectional UDP flows, as well as failed TCP syn attempts including both no
TCP response or a TCP reset. PeerViewer uses the rate of failed connection
attempts within a malware trace as a way to discard non-P2P malware.

Flow size filter keeps only flows that include P2P signaling activity, and dis-
cards P2P data flows. The flow size distribution of P2P traffic usually shows
discontinuities near small flow sizes, and that characterize P2P signaling
activity [12]. It also includes flows with clearly higher flow sizes, usually in-
volving data transfer. PeerViewer uses the flow size distribution in order to
discard P2P data flows. It drops all flows whose size exceeds a given threshold
that we empirically set based on P2P flow size distributions in [16,12].

AS-based filtering: P2P botnets constitute overlay architectures that spans
multiple autonomous systems (AS). We use the rate of distinct AS numbers
within a malware trace in order to discard non-P2P malware. It is defined
as the number of remote AS to the total number of flows ratio in a given
malware trace. We empirically set a threshold 7,5, = 0.2 for this rate, based
on our malware training set. PeerViewer discards malware whose rate of
distinct AS numbers does not exceed this threshold.

Although these heuristics cannot discard all non-P2P flows, they are reliable
enough to characterize the network behavior of P2P applications. They describe
invariants in the P2P signaling activity, and so they cannot be easily evaded
without modifying the P2P protocol implementation. The output of this filter
is a set of P2P signaling flows for each malware sample. We use these flows as
input to the flow clustering module. It groups P2P signaling flows for malware
in our training set according to protocols and message types they are carrying.

3.2 Malware P2P Flow Clustering

PeerViewer aims at classifying malicious code based on its P2P network behav-
ior. We define the network behavior of a P2P application through its signaling

PeerViewer: Behavioral Tracking and Classification of P2P Malware 287

activity, and which results in a different distribution of its network flows. We
proceed first with a flow clustering step that groups together malware P2P flows
that implement the same protocol and signaling activity. We further use clusters
of P2P flows in order to define a P2P footprint for each malware sample.

We consider as a malware P2P flow both the flow triggered by a malware
and its associated peer response. We represent a bidirectional flow using the
following features vector: f, =< Mg, proto, B, B,., Pkts, Pkt,., A, >. Features
of this vector are defined as follows: M, is a tag that associates flow f, with
malware M; proto is a tag that designates the transport layer protocol, being
either TCP or UDP; B, and B, are the amount of Bytes sent and received within
fa; Pkts and Pkt, are the number of packets sent and received; and A; is the
flow duration. PeerViewer separately builds clusters for TCP and UDP flows
using the proto tag, as these flows clearly carry different signaling activities.

We use the unsupervised incremental K-means clustering algorithm in order
to build clusters of P2P flows. It starts with an initial number of clusters, and
increments clusters when the distance of a flow to all existing clusters exceeds a
given threshold. We use the euclidian distance in order to compute the similarity
between two separate malware P2P flows, and we set different clustering thresh-
olds for TCP and UDP flows. In fact TCP flows have a higher offset size because
of their larger TCP headers and their higher number of packets compared to
UDP flows, due to TCP handshake and TCP Acks. Hence, we empirically set
TCP and UDP thresholds to 100 and 20 respectively. They characterize the min-
imal flow size (400 and 40) to the minimal packets number (4 and 2) ratio for
non-empty TCP and UDP flows.

PeerViewer builds clusters of flows by comparing P2P flows that we extracted
from our malware training set. P2P flows for a malware sample M, may span on
multiple clusters. Each cluster contains flows that have similar network features,
and so they are likely to carry the same P2P signaling activity and protocol, but
that are triggered by different malware samples. We further build a P2P footprint
for each malware in our dataset. It specifies the rate of flows for a given malware
within each P2P flow cluster provided by our system. In other terms, a malware
footprint Fo{c;}!" is an m — arry vector of size m, where m is the number of
P2P flow clusters. Attribute F,{c} for malware M, corresponds to the fraction
of P2P flows for M, within cg, with respect to the total number of P2P flows
in the network trace of M. Hence, attributes of a malware footprint are real
values in the [0, 1] interval, with Y Fo{c;}io, = 1.

3.3 P2P Malware Classifier

The classifier module builds clusters of malware that implement the same P2P
protocol and belong to the same P2P botnet family. It groups together malware
that has similar P2P footprints so they are likely to use the same P2P botnet
topology. We use the unsupervised hierarchical clustering algorithm to obtain
P2P malware families. It builds different families of malware according to the
initial malware training set. As opposed to incremental K-means, the hierarchical
clustering algorithm does not require a threshold for adding a new cluster. In

288 N. Kheir and X. Han

fact, it is possible to set a threshold for flow clustering because of the ground
truth provided by malware network traces. However, malware clustering does not
have a reliable ground truth as AV solutions usually provide conflicting malware
classifications (section 4 provides a detailed comparison between our system and
AV signatures). Hierarchical clustering creates a dendrogram where leaf nodes
are elementary P2P malware, and the root node is a set of all malware samples.
We use the Davies-Bouldin index [8] to find the optimal cut in the dendrogram,
and thus to obtain our set of malware P2P families. Each family includes a set
of malware aggregated within a single node in the dendrogram.

Malware families provided by our system are used to classify unknown ma-
licious code on-the-fly while executed in a dynamic analysis environment. We
build a one-class classifier for each family of malware provided by our system
[17]. It characterizes the P2P footprints for malware samples within this family.
During detection, PeerViewer collects the network trace for unknown malicious
code running in a sandbox. It applies P2P filtering and flow clustering, which
provide clusters of P2P flows triggered by a given malware sample. These clus-
ters constitute a network footprint that we use to associate malicious code with
a known malware family. PeerViewer tests this footprint against the one-class
classifiers for all malware families in the training set. It associates a malicious
code with a given malware family when its P2P footprint matches the one-class
classifier of this family. Yet PeerViewer is unable to classify a malicious code
when its P2P footprint matches any, or more than a single malware family. It
notifies the security analysit of a new or unknown P2P malware, so it can be
submitted to a deeper analysis.

4 Experimentation

This section presents the malware dataset that we used in order to build and
validate our system. It describes the design of our experiments, including tests
and results of PeerViewer when applied to the malware dataset at our disposal.

4.1 P2P Malware Dataset

In order to validate our system, we obtained malware samples from a secu-
rity company that implements its own collection and analysis platforms. Our
dataset includes thirty minutes of network traffic for malware executed in a dy-
namic analysis environment. Malware was granted open access to its command
and control infrastructure, including updates and command execution. Malware
traffic was provided in separate pcap files. In fact we do not have access to mal-
ware binaries, but only to their network traces, associated each with the md5
hash for the originating malicious code. The dataset at our disposal includes
network traffic for almost twenty thousand distinct malware samples collected
during a three months period, between March and June 2012.

We use the virusTotal API in order to qualify P2P malware in our dataset
and to validate the results of our experimens. We searched in virusTotal for md5

PeerViewer: Behavioral Tracking and Classification of P2P Malware 289

Table 1. Malware samples by families of malware

[Malware Family[P2P protocol[Samples|Training[Evaluation|Flows [P2P flows|

Sality v3 and v4 Custom 386 335 51 105178 28071
Zeus v3 Kademlia 35 27 8 8523 4227
ZeroAccess Custom 33 24 9 14328 5676
Kelihos Custom 41 34 7 12906 4440
TDSS Kademlia 40 30 10 17680 4368

hashes in our dataset that match with existing P2P malware families. In order to
obtain a valid ground truth for our experiments, we pick-up network traces only
when their md5 labels match with more than 10 known signatures for the same
P2P malware family in virusTotal. Note that AV scanners usually assign conflict-
ing signatures for the same malware sample. For example, a same Sality malware
has a kaspersky signature of Virus.Win32.Sality.aa and a trendMicro sig-
nature of PE_SALITY.BU. Therefore, we build our ground truth malware classes
by matching keywords associated with known P2P malware families, as shown in
table 1. We further compare in section 4.3 our malware families with signatures
provided by three distinct AV scanners. Table 1 summarizes the six distinct P2P
malware families that we identified within our malware dataset. Although 60%
of our dataset consists of Sality (v3 and v4), it also includes significant flows
for other P2P malware families. Yet we aim at experimentally validating three
properties of PeerViewer using our P2P malware dataset.

First, PeerViewer identifies small malware families into a larger set of P2P
malware. For instance, it accurately identifies the zeroAccess family, although
it only constitutes 5% of our initial learning set. Second, PeerViewer identifies
variants of the same malware family that have different implementations of P2P
protocol. We validate this property using the example of Sality versions 3 and 4,
that were correctly classified by our system. Third, PeerViewer separates families
that use the same P2P protocol, but having different P2P signaling activity. Our
system efficiently classifies samples of Zeus v3 and TDSS malware, although they
are based on the same kademlia protocol.

We tested our P2P filter against the initial malware dataset, using the ground
truth provided by P2P malware signatures in table 1. The DNS filter reduces
up to the third the initial number of malware samples. Indeed, it cannot discard
all non-P2P malware because there is multiple other reasons for malware to
operate outside the DNS system, including hard coded C&C addresses, scan
attempts and spam. Yet the flow size filter had little impact with only few flows
being discarded, and that mostly carry malware spam activities. We believe this
is mainly because of the short dynamic analysis time (30 minutes), which was
not long enough for malware to trigger P2P data flows. On the other hand,
the P2P filter uses two distinct thresholds, that are associated with the failed
connection (7y.) and AS-based (74s) filters. We experimentally configured the
values for these thresholds using our ground truth malware dataset. We were
able to achieve 100% detection accuracy for values of 745 in the interval [0.1,0.3]

290 N. Kheir and X. Han

Table 2. Examples of malware P2P flow clusters detected by PeerViewer

[Clstr Id[Nb of flows[Tr. proto] P2P proto [P2P activity [Bs[B:r|Pkts[Pkt,]
1 205 UDP Gnutella Query 35 (130 1 1
2 937 UDP [Custom (Sality P2P)| Peer exchange 34 [610] 1 1
3 11944 UDP [Custom (Sality P2P)[Peer announcement| 20 [600] 1 1
4 1674 UDP uTorrent find_node 450(970] 3 3
5 1427 UDP uTorrent find_node 300({630| 2 2
6 1164 UDP Custom (Zeus P2P) | version request [200[645] 2 2
7 5778 TCP Gnutella push 367 O 4 4
8 504 TCP Gnutella push 882 0 8 7

and 7y, in the interval [0.14,0.6]. We thus conservatively set these thresholds to
the values 0.2 and 0.3 respectively, using our ground truth dataset in table 1.

We collected a total number of 541 malware samples that are classified into
six distinct P2P malware families, as shown in table 1. In the remaining of
this section, we validate our malware classification module using the set of P2P
malware samples extracted from our dataset. We compare PeerViewer with P2P
malware families provided by AV scanners. We also demonstrate its ability to
efficiently classify P2P malware with high precision and recall.

4.2 Malware Classification

We split the dataset at our disposal into two separate groups. The first one in-
cludes 85% of our P2P malware learning set, and that we used to build P2P
malware families. The second group includes the remaining 15% malware sam-
ples, and that we further used to test and validate our system. For the purpose
of this paper, we randomly extracted the malware validation set from each P2P
malware family using the ground truth families in table 1. Our validation set
thus included 85 samples extracted from all six P2P malware families. We use
the remaining 450 malware samples in order to build our malware classification
system. The fourth column in table 1 summarizes the number of samples for
each malware family that we use to build our malware classification system.

PeerViewer builds clusters of flows in order to group together malware flows
that implement the same P2P protocol and signaling activity. It applies incre-
mental k-means to the entire set of malware P2P flows, using the features vector
fa presented in section 3. The flow clustering module, applied to the 450 mal-
ware samples in our dataset, provided a total number of 28 P2P flow clusters,
including 22 clusters of UDP flows and 6 clusters of TCP flows. Because of space
limitations, table 2 illustrates only examples of network features for a subset of
8 P2P flow clusters identified by PeerViewer.

As shown in table 2, different signaling activities for the same P2P malware
were indeed classified into different clusters. For example, clusters 2 and 3 in table
2 included two separate signaling messages (Peer exchange and Peer announce-
ment) for the same Sality malware. As shown in table 2, Sality has different
average request sizes for its two P2P signaling activities (34 vs 20), and so they

PeerViewer: Behavioral Tracking and Classification of P2P Malware 291

Table 3. Examples of P2P footprints for Zeus v3 and ZeroAccess families

[Malware[Cltr 1[Cltr 2[Cltr 3..15[Cltr 16[Cltr 17..24[Cltr 25[Cltr 26[Cltr 27[Cltr 28]

Zeus 1 0.07 0 0 0.93 0 0 0 0 0
Zeus 2 | 0.085 0 0 0.914 0 0 0

Zeus 3 0.03 0 0 0.97 0 0 0 0 0
Zeus 4 |0.037 0 0 0.962 0 0 0 0 0
Zeus 5 |0.071 0 0 0.928 0 0 0 0 0
Zeus 7 |0.098 [0.02 0 0.87 0 0.01 0 0 0
ZA 1 0.035 [0.014 0 0 0 0.577 0.04 0.3 0
ZA 2 0.078 [0.022 0 0 0 0.592 0 0.3 0.011
ZA 3 0.102 [0.011 0 0 0 0.606 0.02 0.27 0
ZA 4 0.019 [0.015 0 0 0 0.62 0.06 0.29 0.013

were classified into different clusters. Clusters 1, 7 and 8 provide yet another ex-
ample for the Gnutella protocol. We obtained separate clusters for the query and
push signaling activities of the same Gnutella P2P protocol. They respectively
use UDP and TCP protocols, and they have different network features so they
were classified into separate clusters. Note that we may still obtain clusters that
implement the same P2P signaling activity and protocol (e.g. clusters 4 and 5
for the same uTorrent protocol). Nonetheless, these clusters show different P2P
network features that characterize different implementations of the same P2P
protocol by different malware families.

We use the 28 flow clusters in order to build P2P footprints for malware
in our dataset. Malware footprints indicate the proportion of P2P flows for a
given malware that belong to each of the 28 P2P flow clusters. Due to space
limitations, table 3 illustrates examples of P2P footprints from only two P2P
malware families, Zeus v3 and ZeroAccess. As shown in this table, malware of
the same family has almost identical P2P footprints and so it would be grouped
within the same clusters. For example, malware of the Zeus v3 family has almost
all of its P2P signaling flows in cluster 16, while the few remaining flows belong
to cluster 1. On the other hand, malware of the zeroAccess family has almost
a third of its P2P signaling flows in cluster 27, and the remaining two thirds
in cluster 25. These two malware families would be clearly separated into two
clusters by the malware classifier.

The classifier module uses malware footprints in order to build families of
P2P malware. We implement the hierarchical clustering algorithm using Python,
and we use the Davies-Bouldin index to obtain the optimal set of clusters. The
malware classifier module identified a total number of 8 clusters, associated with
8 distinct P2P malware families. We validate our P2P malware families using
the ground truth classification in table 1.

Six P2P malware clusters were clearly associated with each of the six malware
families in table 1. In fact all Zeus v3, ZeroAccess and Kelihos malware samples
were classified into separate clusters respectively. We thus consider our clusters
to characterize the P2P network footprint of these distinct malware families. On
the other hand, samples of Sality malware were split into two separate clusters,
including 295 and 37 samples in each cluster respectively. These clusters are likely
to include malware that respectively belong to versions v3 and v4 of the Sality

292 N. Kheir and X. Han

family. Yet we couldn’t validate this assumption using our ground truth in table
1 because of the conflicting AV signatures for versions of the Sality malware.
Therefore, in order to refine our ground truth, we checked the update time for
AV signatures that were matching each of the malware md5 hashes associated
with the Sality malware. We would expect samples for the version v4 of this
malware to be more recent in general than samples of version v3. We admit that
AV update times do not formally validate our classification because we cannot
rule out the possibility of newer malware samples implementing P2P protocol
for version 3 of this malware. However, signature update times still provide
evidence of different version implementations for this same malware family. Yet
we observed that 80% of malware in the smaller Sality P2P cluster has newer
update times than all other samples in the larger P2P cluster. We believe this
is a clear evidence of two families of the Sality malware, that we associate with
versions 3 and 4 of this malware family. In fact, versions v3 and v4 of the Sality
malware have different implementations of their P2P signaling protocols, and
so AV signatures cannot correctly classify these two malware families based on
their system behavior. PeerViewer thus offers a complementary approach that
classifies P2P malware based on its network-level behavior, which cannot be
easily characterized by host-based signatures.

Finally, we obtained two additional clusters, both including two malware sam-
ples that belong to different malware families in table 1. These are clearly out-
liers and so they were misclassified by our system. PeerViewer was indeed able
to correctly classify 446 out of 450 malware samples in the initial training set.
It clearly outperforms current AV signatures as it achieved near 0.8% misclassi-
fication rate.

4.3 Comparison with AV Signatures

This section analyzes the validity of our P2P malware families by comparing
them with signatures from three AV scanners, including McAfee, kaspersky and
Trend Micro. In fact, our system proposes a behavioral approach that classifies
P2P malware on the fly while executing in a dynamic analysis environment. We
need to verify the cohesion of our P2P malware families using a learning set of
known and already qualified malware dataset. For each malware family created
by our system, we collect AV signatures for all samples of this family. We compute
the precision and recall of our system in order to validate the consistency of our
malware classification with respect to all three AV scanners. Our experiments
prove the ability of PeerViewer to accurately classify P2P malware using only
network level information, with no a-priori knowldge about the system behavior
of malware.

Table 4 compares malware families provided by our system with signatures
from three AV scanners. As shown in this table, AV scanners assign different
signatures for samples of the same malware families. These signatures usually
constitute different aliases for the same malware family. In order to have com-
mon evaluation criteria for all three AV scanners, we used the spyware remove

PeerViewer: Behavioral Tracking and Classification of P2P Malware 293

Table 4. Comparison with kaspersky, McAfee and TrendMicro signatures

[Family Id[Samples] Kaspersky [McAfee [TrendMicro]
PE_SALITY: 223

win32.Sality: 193 W32/Sality: 219 :
1 205 Win32.Spammy: 29 Downloader-CPY: 22 WORM-KOLAB: 9
Mal_Odra-5: 2
Unknown: 23 Unknown: 4

Unknown: 11

5 o7 win32.Zbot: 25 PWS-Zbot: 27 Tspy-Zbot: 27

Unknown: 2
Win32.Sefnit: 17 Troj-Kazy: 13

3 24 Win32.ZAccess: T Sefnit: 24 Troj-Sirefef: 7
Unknown: 4

TROJ_FAKEAV: 29

Win32/Kelihos: 23

Win32.Kelihos: 27 GenericBackDoor.xf: 8

4 32

unknown: 5 TROJ.INJECTER: 3
unknown: 1
5 37 win32.Sality: 37 ‘W32 /Sality: 37 PE_SALITY: 37
Win32.TDSS:19 FakeAlort-JM: 26
6 30 Win32.FakeAV: 11 Trojan.Alureon:4 BKDR-TDSS: 30
7 2 win32.Sality, win32.killAV[Win32/Nimnul, win32/Zbot |[PE_fujacks, PE_nimnul
8 2 Win32.Sality, unknown unknown: 2 PE_fujacks, PB_down
([Kaspersky[McAfee[TrendMicro| | | Sal;ty | Sal:lty | ZA |ke1ihos TDSS| Ze:l;s
[Precision] 83.16% [88.45% | 86.5% | v v v
[Recall | 90.8% [89.31% | 94.85% | [Accuracy] 99.3% [99.1% [94.2%] 95% | 98% [100% |
Fig. 2. Precision and recall against Fig. 3. Classification accuracy by mal-
the three AV scanners ware family

website! in order to associate all aliases of the same malware families. For ex-
ample, the signature win32.spammy for the first malware family in table 4 is
identified by spyware remove as a kaspersky alias of spammer.sality.a, and
so we consider it as part of the sality family.

Figure 2 summarizes the classification accuracy and recall of PeerViewer
against the three AV scanners. Classification accuracy is computed as the aver-
age precision rate for all six P2P malware families identified by PeerViewer. We
introduce the precision rate for a P2P malware family as the ratio of malware
samples that have the same predominant AV signature with respect to the total
number of samples in this family. The classification recall is computed the same
as for the precision rate, excluding samples that are unknown for AV scanners. As
in figure 2, PeerViewer has almost stable precision and recall against all three
AV scanners. It enhances by at least 11.5% the malware classification for AV
scanners (in case of McAfee which provides the highest precision rate), based on
our ground truth in table 1. It also differentiates samples of the same malware
family that implement different variants of the same P2P protocol, as for the
sality malware which is indeed represented by the same signature by all three AV
scanners. Yet it replaces current AV signature aliases with a common behavioral
malware classification, as in the example of the third malware family provided
by PeerViewer in table 4. The latter provides a common classification for mul-
tiple aliases of the same zeroAccess malware family, including win32.ZAccess,
win32.sefnit, troj Kazy and troj_Sirefef aliases.

! http://www.spywareremove . com/

http://www.spywareremove.com/

294 N. Kheir and X. Han

4.4 Classification and Detection

This section demonstrates the detection phase of PeerViewer, which classifies
P2P malware on-the-fly during dynamic analysis. We implement the cross-vali-
dation method that consists of extracting an evaluation dataset prior to building
malware classifiers, and then to use this dataset in order to test and validate our
classifiers. We reiterated the cross-validation process using different evaluation
sets, each time randomly extracting 15% of our malware dataset before we build
our one-class classifiers. In order to guarantee the soundness of our experiments,
our evaluation set had always the same malware composition, as shown in the
fifth column of table 1.

We apply the P2P flow filter and we build clusters of P2P flows using the
network traces for each sample in our malware validation set. Then we build
a P2P footprint for each sample using its P2P flow clusters. We use malware
footprints as input to the one-class classifiers for each of our six malware families.
Our system achieved near 97.6% classification accuracy, based on the ground
truth classification in table 1. The detailed results of our experiments for each
malware family are illustrated in the table of figure 3.

Samples of Zeus v3 and TDSS malware families were accurately classified
with almost no false positives. False positives in case of Sality malware were all
due to mis-classifications between the different versions of this family. Note that
100% of Sality malware in our dataset was correctly classified by PeerViewer,
and almost 99.2% of these samples were classified with the appropriate version
of this family. In fact we couldn’t formally validate our classification of Sality
versions v3 and v4 because AV scanners do not constitute a reliable ground truth.
Hence, we used update times for AV detection signatures in order to separate
between different versions of Sality malware. On the other hand, PeerViewer has
correctly classified only 94.2% of kelihos malware mostly because of the small
number of samples in our learning set. Yet PeerViewer outperforms most AV
scanners with an overall classification accuracy of 97.6%, while only relying on
network features with no need of malware binary analysis.

5 Discussion

PeerViewer classifies malware using statistical network features such as flow
size, IP distribution and traffic rate. First, it classifies flows for a given mal-
ware sample into categories where they implement the same signaling activities.
Then it builds malware families using similarities in their P2P network foot-
prints. PeerViewer would be thus unable to accurately classify P2P malware
that modifies its P2P communication rounds, contacts a larger set of peers, or
uses random paddings in its P2P traffic. These maneuvers modify statistical
consistency in malware P2P flows and so it makes malware classification more
difficult using our features. Although they are technically possible, these tech-
niques require a malware developper to modify its P2P C&C toolkit. They also
increase overhead and reduce botnet stability, which makes botnet management
more difficult. Yet botnets that adopt these techniques would no longer be able

PeerViewer: Behavioral Tracking and Classification of P2P Malware 295

to dissimulate within benign P2P flows, and so they will be exposed to other
malware detection techniques.

On the other hand, PeerViewer classifies malware that uses P2P protocols
only as a primary C&C channel. In fact, malware may use P2P protocols as
a failover mechanism in case where it cannot access its primary C&C channel.
This malware does not trigger P2P flows during analysis, and so it would not
contribute to building P2P malware classifiers. Authors in [21] propose an ap-
proach that detects primary C&C channels during malware dynamic analysis.
This approach dynamically intercepts primary C&C channels and forces malware
to engage in a failover strategy. Using techniques such as [21] enables to trigger
P2P failover strategies, and so PeerViewer will be able to take these into account
during its processing of malware P2P flows. Nonetheless, these techniques apply
during malware dynamic analysis and so they are out of scope in this study.

Future work will explore techniques to integrate PeerViewer into a more com-
prehensive malware detection system. In fact, PeerViewer classifies malware sam-
ples with a high detection accuracy. Nonetheless, it is yet unclear how PeerViewer
would be a able to separate P2P flows triggered by multiple P2P applications
running on the same terminal. Although it is out of scope in this paper, we
experimented with PeerViewer in order to detect P2P infected nodes within live
network traffic. PeerViewer efficiently detects and characterizes infected nodes
when they do not concurrently implement other benign P2P applications. There-
fore, future work will adress this issue by proposing appropriate methods that
tell apart malware and benign P2P applications when they are running on the
same network terminal.

6 Related Work

Several approaches detect P2P malware through behavioral analysis of network
traffic, without deep packet inspection. They usually propose a binary classifi-
cation of P2P nodes, that is whether being infected or benign [6,9,11,19,27,28].
Yet there is only few approaches that build families of P2P malware based on
its P2P network behavior [12,24].

The first category includes solutions such as BotTrack [9], BotMiner [11] and
BotGrep [19]. They correlate network flows and detect P2P bots based on their
overlay C&C topologies. First, they build clusters of terminals and isolate groups
of hosts that form P2P networks. Then they separate malicious P2P groups us-
ing lists of infected P2P nodes provided by sources such as honeypots. These
techniques mostly rely on IDS signatures and IP blacklists to detect P2P bots.
However, botnet activity is becoming stealthier and difficult to detect using IDS
signatures, thus limiting the coverage of these solutions. Bilge et al. propose an
alternative approach that detects botnets using large scale netflow analysis [6].
It observes traffic at large ISP networks and detects botnets through the coordi-
nated activity for groups of infected nodes. However, this approach detects only
centralized botnet architectures, and cannot accurately detect distributed P2P
botnets. Another trend of research aims at detecting infected P2P bots inside a

296 N. Kheir and X. Han

given network perimeter [27,28]. These studies propose to first discard non-P2P
traffic using heuristics such as DNS traffic and failed connection attempts. They
build groups of P2P nodes that have the same network behavior or that connect
to a common set of remote IP addresses. Further they compute a similarity de-
gree between network nodes in order to detect those that are likely to be part of
a same botnet. However, these studies can only detect P2P bots when there is
multiple infected nodes inside the same network perimeter. Yet they only pro-
vide a binary classification, without being able to identify a common malware
family or a given P2P protocol.

The second category classifies P2P flows and identifies specific P2P proto-
cols or applications [12,24]. PeerRush [24] uses features such as inter-packet
delays and flow duration in order to classify P2P applications. These features
achieve good detection accuracies against benign P2P applications. However, it
is not clear how they will contribute to classifying P2P botnets. For exemple,
inter-packet delays can be easily evaded and these are weak indicators of P2P
activity. Yet PeerRush deals with all P2P signaling flows as a whole. It does not
classify flows according to their embedded message types and the rate of each
signaling activity. PeerViewer thus provides a better alternative as it builds spe-
cific malware P2P footprints that take it account the P2P signaling rounds and
categories of message types. On the other hand, Hu et al. [12] use flow statistics
to build behavior profiles for P2P applications. They experimented only with
two P2P applications (PPLive and BitTorrent), and did not consider malicious
P2P activity. Yet, they do not separate P2P control and data traffic. In fact data
flows do not clearly characterize P2P botnet C&C activity as they depend on
the content being shared. PeerViewer thus classifies P2P signaling flows and use
only these as a basis for P2P botnet classification.

7 Conclusion

This paper presented PeerViewer, a system that automatically classifies P2P
malware based on its P2P network behavior. It does not use system-level infor-
mation, nor does it use flow content signatures during its processing of malware
traffic. Indeed PeerViewer classifies P2P flows for a specific malware into cate-
gories where they implement the same P2P signaling activity. It further builds
a footprint that characterizes the P2P network behavior of malware, using the
different categories of signaling flows triggered by this malware. To the best of
our knowledge, PeerViewer is the first to propose a fully behavioral approach
that detects and classifies P2P malware into specific malware families. We tested
our system against signatures of malware families provided by several anti-virus
solutions. Experimental results prove our ability to accurately classify P2P mal-
ware with a very low false positives rate.

PeerViewer: Behavioral Tracking and Classification of P2P Malware 297

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Zeus tracker, https://zeustracker.abuse.ch/ (accessed at June 2013)

Anubis: Analyzing unknown binaries (2011), http://anubis.iseclab.org

Blue coat - exposing malnet strategies and best practices for threat protection. In:
2012 Web Security Report (2012)

Aberer, K., Hauswirth, M.: An overview on peer-to-peer information systems. In:
Proceedings of the 4th Workshop on Distributed Data and Structures (2002)
Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable
behavior-based malware clustering. In: Proc. 19th NDSS (2009)

Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: Exposure: Finding malicious do-
mains using passive dns analysis. In: Proc. 18th NDSS (2011)

Bolla, R., Canini, M., Rapuzzi, R., Sciuto, M.: Characterizing the network behavior
of p2p traffic. 4th International Workshop on QoS in Multiservice IP Networks
(2008)

Davies, D.I., Bouldin, D.W.: A cluster seperation measure. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence (1979)

Francois, J., Wang, S., State, R., Engel, T.: Bottrack: Tracking botnets using
netflow and pagerank. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont,
A., Scoglio, C. (eds.) NETWORKING 2011, Part I. LNCS, vol. 6640, pp. 1-14.
Springer, Heidelberg (2011)

Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B.: Peer-to-peer botnets:
Overview and case study. In: Proceedings of USENIX HotBots (2007)

Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering analysis of network
traffic for protocol and structure independent botnet detection. In: SSP (2008)
Hu, Y., Chiu, D.-M., Lui, J.C.S.: Profiling and identification of p2p traffic. In:
Computer Networks, vol. 53, pp. 849-863 (2009)

Jacob, G., Hund, R., Kruegel, C., Holz, T.: Jackstraws: Picking command and
control connections from bot traffic. In: 20th Usenix Security Symposium (2011)
Kapoor, A., Mathur, R.: Predicting the future of stealth attacks. In: Virus Bulletin
(2011)

Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., Faloutsos, M.: Is p2p dying
or just hiding? In: IEEE GLOBECOM, vol. 3, pp. 1532-1538 (2004)

Karagiannis, T., Broido, A., Brownlee, N.: k claffy, and M. Faloutsos. File-sharing
in the internet: A characterization of p2p traffic in the backbone. In: UC Riverside
technical report (November 2003)

Khan, S.S., Madden, M.G.: A survey of recent trends in one class classiffication.
In: Coyle, L., Freyne, J. (eds.) AICS 2009. LNCS, vol. 6206, pp. 188-197. Springer,
Heidelberg (2010)

Lua, C.-N., Huang, C.-Y., Lina, Y.-D., Lai, Y.-C.: Session level flow classification by
packet size distribution and session grouping. International Journal on Computer
Networks 56, 260—272 (2012)

Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: Botgrep: Finding
p2p bots with structured graph analysis. In: Proc. 19th USENIX Security (2010)
Neugschwandtner, M., Comparetti, P.M., Jacob, G., Kruegel, C.: Forecast: skim-
ming off the malware cream. In: 27th Annual Computer Security Applications
Conference, ACSAC (2011)

Neugschwandtner, M., Comparetti, P.M., Platzer, C.: Detecting malware’s failover
c&c strategies with squeeze. In: Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC (2011)

https://zeustracker.abuse.ch/
http://anubis.iseclab.org

298

22.

23.

24.

25.

26.

27.

28.

N. Kheir and X. Han

Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware
and signature generation using malicious network traces. In: USENIX Symposium
on Networked Systems Design and Implementation (2010)

Porras, P., Saidi, H., Yegneswaran, V.: Conficker ¢ p2p protocol and implementa-
tion. Technical report, Computer Science Laboratory, SRI International (2009)
Rahbarinia, B., Perdisci, R., Lanzi, A., Li, K.: Peerrush: Mining for unwanted p2p
traffic. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA 2013. LNCS, vol. 7967,
pp. 62-82. Springer, Heidelberg (2013)

Rieck, K., Holz, T., Willems, C., Diissel, P., Laskov, P.: Learning and classification
of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp.
108-125. Springer, Heidelberg (2008)

Tenebro, G.: W32.waledac threat analysis. In: Symantec Technical Report (2009)
Yen, T.-F., Reiter, M.K.: Are your hosts trading or plotting? telling p2p file-sharing
and bots apart. In: 30th Conf. Distributed Computing Systems (2010)

Zhang, J., Perdisci, R., Lee, W., Sarfraz, U., Luo, X.: Detecting stealthy p2p botnet
using statistical traffic fingerprints. In: Proc. 41st DSN (2011)

	Lecture Notes in Computer Science
	Introduction
	System Overview
	System Description
	Malware P2P Flow Filter
	Malware P2P Flow Clustering
	P2P Malware Classifier

	Experimentation
	P2P Malware Dataset
	Malware Classification
	Comparison with AV Signatures
	Classification and Detection

	Discussion
	Related Work
	Conclusion

