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ABSTRACT
Phishing is a form of online identity theft that deceives un-
aware users into disclosing their confidential information.
While significant effort has been devoted to the mitigation
of phishing attacks, much less is known about the entire
life-cycle of these attacks in the wild, which constitutes,
however, a main step toward devising comprehensive anti-
phishing techniques. In this paper, we present a novel ap-
proach to sandbox live phishing kits that completely protects
the privacy of victims. By using this technique, we perform
a comprehensive real-world assessment of phishing attacks,
their mechanisms, and the behavior of the criminals, their
victims, and the security community involved in the process
– based on data collected over a period of five months.

Our infrastructure allowed us to draw the first compre-
hensive picture of a phishing attack, from the time in which
the attacker installs and tests the phishing pages on a com-
promised host, until the last interaction with real victims
and with security researchers. Our study presents accurate
measurements of the duration and effectiveness of this pop-
ular threat, and discusses many new and interesting aspects
we observed by monitoring hundreds of phishing campaigns.

1. INTRODUCTION
Despite the large effort and the numerous solutions pro-

posed by the security community, phishing attacks remain
today one of the main threats on the Internet [1]. They
usually aim at deceiving users into visiting fake web pages
that mimic the graphic appearance of real and authentic
websites [18]. The main goal of an attacker, also known as
phisher, is to collect sensitive user data such as login cre-
dentials, banking information, or credit cards numbers. The
stolen data can then be monetized by leveraging hijacked ac-
counts and performing fraudulent online transactions, or in-
directly through the resale of the stolen information to other
cyber-criminals, mostly on the Internet black market [16].

Phishing attacks constitute a major challenge for Inter-
net Service Providers (ISPs), as well as for email providers,
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browser vendors, registrars, cloud service providers, and law
enforcement agencies. To mitigate these attacks, a broad
set of solutions have been proposed, tackling each of the
three different stages that constitute a phishing attack [16].
At the first stage, they try to prevent phishing emails from
reaching the end users by applying email filters [12], or by
detecting [41, 45, 35, 43, 28], blocking, or taking down phish-
ing web sites [29]. At a second stage, existing solutions focus
on providing better user interfaces, such as browser plugins,
that inform users about the reputation of a target web site,
and notify users as soon as they are redirected towards a
potentially malicious page [42, 11]. Finally, the last line of
defense relies on proper education to help users recognize
phishing sites [22, 23]. Despite this considerable effort, the
phishing problem is far from being solved and a recent re-
port by the Anti-Phishing Working Group (APWG) shows
that the number of unique phishing sites was still increas-
ing in 2015 [3], and that the number of phishing reports the
APWG receives has almost doubled between 2014 and 2015.

In order to discern phishing attacks, diverse efforts have
been made by security researchers, and that involve different
actors in the phishing ecosystem. However, previous studies
focused mainly on the technical aspects of the problem, i.e.,
how phishers compromise vulnerable servers [40], and how
phishing kits work [8]. Researchers also remotely analyzed
existing phishing pages, based on ground truth datasets such
as spamtraps [33] and phishing blacklists [29], in order to
provide a real world assessment of the number of victims
and to measure the efficiency and extent of take-down op-
erations. Recently, Bursztein et al. [4] advanced our un-
derstanding about phishing by studying criminals incentives
and the way they monetize stolen user credentials.

Unfortunately, previous studies have been confronted to
two main dilemmas. First, most phishing kits were moni-
tored only after they had been detected by public or private
anti-phishing services. This drastically limits the extent of
these studies, since an important part of the phishing life
cycle (preceding any detection) has mostly remained un-
known. Second, researchers have never observed the way
real victims interact with phishing kits because of obvious
ethical reasons. In this paper, we try to fill the gaps in the
understanding of the phishing ecosystem by analyzing the
attackers behavior and the way the potential victims inter-
act with phishing kits in the wild.

As discussed in [32], a natural tension exists between con-
ducting accurate, reproducible research and reducing the harm
caused by the content that is being removed. Two are the
main challenges that affect research on phishing attacks:



Should researchers notify affected parties in order to expe-
dite take-down of phishing sites? Should researchers inter-
vene to assist victims?

Bearing these issues in mind, this paper proposes a new
approach that lifts the barriers imposed by these ethical con-
siderations in order to provide a first comprehensive real
world assessment of phishing attacks, their mechanisms, and
the behavior of all the actors involved in the process. Our
approach leverages a web honeypot to attract real attackers
into installing phishing kits in a compromised web appli-
cation. This is inspired by the fact that, according to the
APWG’s Global Phishing Survey, 71.4% of the domains that
hosted phishing pages were compromised domains [2]. We
then present a novel sandbox technology designed to neu-
tralize a phishing kit while maintaining it functional for a
long period of time. Our approach is designed to strictly pre-
serve the victim privacy, without interfering with the attack
process in order to make sure that attackers can compromise
the honeypot, install phishing kits, and conduct functional
tests without being alerted about the sandbox configuration.

Preserving the user privacy is a very challenging task.
Most phishing kits instantly exfiltrate the newly collected
victim credentials to the attacker, leaving no time to remove
these credentials from our servers. Even worse, almost 97%
of malicious phishing pages are accessible via unprotected
HTTP connections [2], which may expose the cleartext com-
promised credentials to eavesdropping over the network. Fi-
nally, as discussed in section 6, some phishing pages re-route
the HTTP requests to a different server directly controlled
by the attacker [40], using the compromised application only
to host the page but not to collect the data.

Our sandbox proposes a comprehensive solution to these
problems, allowing us to collect real world data about the
behavior of both attackers and victims, and to perform the
first thorough investigation regarding phishing attacks. To
the best of our knowledge, no previous work was able to
monitor, in a white-box fashion, the lifecycle of a phishing
kit.

Based on these elements, we discuss a number of inter-
esting findings. For example, our experiments show that
phishing kits are only active for less than 10 days since their
installation and over this time most of them collect a limited
number of user credentials (fewer than reported in past ex-
periments). Therefore, attackers rely on compromised web-
sites to install a large number of phishing kits in a sort of
shot-and-forget approach, rapidly moving to new phishing
pages as the old ones get blacklisted. We also confirm that
Google Safe Browsing (GSB) and Phishtank are very effec-
tive tools to protect end users. However, our experiments
show that both services tend to blacklist phishing URLs be-
tween 10 and 20 days after their first appearance, and this
is often too late as most of the victims already connected
to the page. Finally, we observed a considerable flash crowd
effect once phishing URLs appear in public blacklists. If not
properly modeled, this phenomenon can completely skew
the analysis results, by confusing security researchers with
potential victims.

To summarize, we make the following contributions:

• We present a novel approach to sandbox live phishing
kits that completely protects the privacy of end users.

• We observed the interaction of attackers, victims, and
security researchers with the phishing pages, recon-

Figure 1: Typical Phishing Attack

structing for the first time the entire lifecycle of a
phishing kit.

• For the first time, we measure the impact of blacklist-
ing services on phishing pages from the time in which
they are first installed (and not from the time they
are reported or discovered by security companies). We
also discuss new techniques to use the collected data to
promptly identify the email address used by criminals
to retrieve the stolen information.

Beyond these main findings, we also discovered two new
phishing techniques that have never been reported before,
and we conducted a thorough analysis of the modus-operandi
of the corresponding campaigns.

2. BACKGROUND
In this section we provide a more detailed description of

phishing attacks and their main actors. We then describe in
more details the ethical issues we encountered during each
phase of our experiments.

Anatomy of Phishing Attacks: A typical phishing at-
tack, as depicted in Figure 1, consists of three main actors:
a phisher, a set of potential victims, and possibly a num-
ber of third party visitors – such as researchers and secu-
rity editors. Phishers mostly seek to compromise vulnera-
ble web applications, install phishing kits that mimic vic-
tim web sites, and advertise the phishing URLs using, for
example, spam emails and posts on social networks. The
victims are the end users who receive these messages and
connect to the phishing pages. Phishers usually seek limited
interactions with their victims as their main goal is to hi-
jack sensitive data without disclosing the real nature of their
phishing pages. Therefore, they often redirect victims to the
authentic website after they have provided their credentials,
or they redirect them towards error pages to make them dis-
connect from the phishing site. As soon as a victim connects
to a phishing page, she can either realize the real malicious
nature of the site and disconnect, or she can be fooled by
the legitimate-looking page appearance and attempt to lo-
gin, thus providing her credentials. Finally, the third party
category includes visitors from security companies, public
crawlers, and independent researchers. They usually exam-
ine and monitor the phishing pages only after the presence of
the phishing kit is included in popular blacklists (e.g., Phish-
Tank), as discussed in details in section 6.2. The behavior
of third party visitors can be very similar to the behavior of
real victims, which makes it difficult to separate these two
actors within the same experimental setup.

Ethical Considerations: Researchers have already pro-
posed the use of honeypot systems as a tool to analyze phish-
ing attacks [40]. However, conduct live phishing experiments
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Figure 2: High Level System Overview

and evaluations inside honeypots has always been confronted
with ethical considerations that have severely limited the
scope of all previous research studies about phishing attacks.
The result is that previous experiments were often limited
to the analysis of how phishers compromise the honeypot, as
well as the static analysis of the collected phishing kits. Un-
fortunately, honeypots have never been used to study the
behavior of the victims as they connect and interact with
the installed phishing pages. As soon as victims are being
enrolled into a honeypot experimental setup, ethical con-
siderations cover all aspects related to the protection and
perfect secrecy of user identities, as well as the secrecy of
their credentials in case where they may be exposed during
the attack. In order to properly address this important eth-
ical problem, one should have a better understanding about
the key steps of a phishing attack where the user identity or
credentials may be exposed. We divide these ethical issues
into two main categories, depending on whether they may
be addressed on the server or on the client-side.

On the server side, the phishing kits aim at collecting user
submitted data. The stolen data may be either locally stored
on the honeypot server until it is retrieved by the phisher,
or it may be instantly sent to the phisher by email or direct
HTTP connections. Therefore, it is important to prevent
any user data to be locally stored on the server, or even
processed by the phishing application. Moore et al. used
public accessible data collected on vulnerable web servers,
including statistics of the web page hits and credentials that
the attackers had collected and forgotten to remove from the
vulnerable server [29, 30]. Following the publication of their
study, more ethical issues concerning the user credentials
were exposed, most of which being still unanswered [32].

Apart from the above ethical problems on how to prevent
information from being stored on the server, ethical issues
also exist on the client-side. In fact, phishing kits may collect
user credentials by posting them to other malicious servers
that are under the direct control of the attacker. Moreover,
97% of the phishing pages are accessible via clear-text HTTP
connections [2], thus exposing the victim’s sensitive data to
eavesdropping over the network. Therefore, and even though
no sensitive data would be hosted on the remote server, there
may still be a considerable risk because of the clear-text
sharing of user credentials on the network.

Finally, it is important to note that our institution does
not have an IRB, but we asked advice from the company
legal department, and were granted permission to perform
the research.

3. DATA COLLECTION
We leverage an existing honeypot infrastructure [5] as a

basis to implement our system. As shown in Figure 2, our ar-
chitecture consists of two main components: a public proxy
gateway and a private backend server that implements the

main honeypot applications. The gateway was hosted on a
number of public hosting providers, including Amazon EC2,
which previous research has revealed to be a popular tar-
get for attackers looking for machines to compromise and
conduct malicious activities on the Internet [15]. The proxy
server does not host any content and acts purely as a re-
verse proxy to forward all HTTP connections through a se-
cured VPN channel towards the honeypot server hosted in
our premises. For security reasons, outgoing traffic from the
honeypot is dropped at the firewall – except for DNS queries
and for a limited number of verified SMTPS connections (as
explained in Section 4.3). On the honeypot server, we con-
figured 18 vulnerable PHP pages that can be exploited by
attackers and allow them to upload files and execute shell
commands. Note that the honeypot is configured in such a
way that attackers cannot modify these PHP pages.

The data collection module periodically retrieves the data
collected on the honeypot server, including the server access
logs and the uploaded files (such as web shells, phishing kits,
defacement pages, exploit kits, and hacking tools).

Elimination of Other Malicious Files: The identifi-
cation of phishing kits is performed through a number of
heuristics, complemented by a manual classification. For in-
stance, most phishing kits contain a large number of files
and resources required to replicate the targeted website [8],
and therefore isolated files are unlikely to be used for phish-
ing. We also adopted a number of keywords to determine the
content of the files and identify possible targets. However,
it is very difficult (and outside the scope of this paper) to
setup an accurate filter that can precisely separate phishing
applications from other malicious files uploaded to the server
(we refer the reader to existing work on this specific prob-
lem [45]). In our study we decided to adopt a conservative
approach and we manually analyzed all the files that did not
match our filters in order to be sure that only phishing pages
were hosted on our honeypots. We removed on a daily basis
other malicious files including web shells, exploit kits, and
drive-by download from the honeypot. As part of this activ-
ity, we may have erroneously removed some small phishing
kits, but we believe that it is better to be conservative and
avoid exposing users to other dangerous threats.

Data Exfiltration by Client-Side Side Channels: We
also verified that the phishing kits did not leverage other
side-channels to capture and successfully exfiltrate the cre-
dentials from the victim browser. We found three PKs that
had these functionality and used obfuscated JavaScript code
disguised as a HTML img tag to send the user credentials di-
rectly to a remote server. However, our client-side protection
described in Section 4 acts directly on the typed password,
before the malicious JavaScript retrieves it.

Overall, through an accurate user inspection, we were able
to confirm that no user credentials were disclosed during our
experiments.

4. SANDBOX AND PK NEUTRALIZATION
This section presents an overview of our platform and de-

scribes the properties and design configuration that enable
us to address the ethical issues outlined in section 2. It also
illustrates the deployment scenario, including the system
components and data management procedures. Finally, it
describes the low-level implementation details and discusses
the potential limitations of our approach.



4.1 Design Goals
In order to address the ethical issues and to enable a san-

itized honeypot platform that preserves the privacy and se-
curity of any potential victim data, our system achieves the
following design requirements:

Client-Side Data Mangling: To prevent sensitive data
from being sent out of the user terminal, our system injects
into all phishing pages a JavaScript component whose pur-
pose is to replace any posted information with random data
before it is sent over the network. The injected code protects
all potential victims as long as they have not explicitly de-
activated JavaScript in their browsers. For those users who
may have deactivated JavaScript, our system also injects a
HTML noscript tag that redirects user to an error page so
that they would disconnect from the honeypot.

Server-Side Data Randomization: As an emergency
backup in case JavaScript is enabled on the victim terminal
but the injected code fails to replace the posted information,
our honeypot server relies on a custom Apache PHP module
that filters all incoming data before it reaches the phishing
kit. In particular, our solution replaces on the fly all user
data that reaches the server with random fake data, mak-
ing sure that no sensitive information may ever reach the
phishing kit, nor it can be locally stored on the honeypot.

HTTP Redirection Disruption: To make sure that our
honeypot may not be used by the attacker as an elemen-
tary component of a broader malicious redirection chain [25],
our system uses static analysis techniques to detect and dis-
able any form of web redirection, and so to make sure that
no users may be redirected from the honeypot towards any
other malicious website under the control of the attacker.

Concealed Instrumentation: One of the main goals of
our system is to protect the users while being perfectly trans-
parent for the attacker. Therefore, the honeypot is designed
to identify attackers and monitor their procedures and mech-
anisms without revealing the real nature of our experiment.
In particular, we noticed that attackers usually test their
kits by inserting fake credentials in the phishing page and
verifying that such credentials are correctly exfiltrated to
their preferred drop-zone. In order to ensure that these test-
ing operations are successful, our system needs to selectively
disable the client- and server-side randomizations, and to al-
low phishing kits to send emails (which is the most popular
exfiltration technique implemented by the phishing kits [8])
when attackers decide to test their pages.

4.2 System Overview
As illustrated in figure 2, our honeypot implements five

main functionalities, including the attacker tracking module,
the client-side protection module, the server-side protection
module, the controlled SMTP module, and the data collection
and processing module.

As a core component of the system, the attacker track-
ing module is responsible for distinguishing attackers who
connect to the honeypot from other benign users such as
victims and third party visitors. This allows us to apply dif-
ferent access control policies whose purpose is on one hand
to enable attackers to verify and test their phishing kits, and
on the other hand to prevent any sensitive data posted by
the victims from being captured by the attacker. This mod-
ule assigns the role of the attacker to the user who installed

the phishing kit on the compromised application. The at-
tacker tracking module further keeps track of all attackers
who connect to the honeypot using a history of attacker IP
addresses and their associated user agents, and provides this
information as input to the subsequent protection and data
collection modules.

The client-side and server-side protection modules use the
list of attackers provided by the tracking module as input
in order to identify potential victims and to prevent their
data from being exported or hijacked from the user terminal.
If the visitor is not an attacker, the module inspects each
outgoing HTTP response and injects in each page a HTML
noscript tag and a static JavaScript file (more details in
Section 4.3), which hooks the data submission and replaces
the user’s data with fake information.

The server-side protection module performs two functions:
backend data randomization and malicious redirection dis-
ruption. In the first case, it acts as a second line of defense
in addition to the client-side protection. It operates on the
server side, and it replaces the incoming data with random
values before it is passed to the web application. The server-
side protection module also intercepts and blocks all HTTP,
HTML, and JavaScript redirections that point to other re-
mote websites in order to make sure that the honeypot server
cannot be used as a stepping stone within a broader mali-
cious redirection chain. It detects such redirections through
performing static rule-based analysis over the content of each
HTTP response provided by the server. Our system allows
only redirections to other pages hosted in our honeypot, and
automatically intercepts and drops any other destination.

Finally, as most phishing kits exfiltrate the stolen data by
emails, and since our honeypot is configured to drop outgo-
ing SMTP connections to prevent attackers to send spam,
we also implemented an SMTP module that allows each at-
tacker identified by the tracking module to send a config-
urable amount of messages (two in our experiments) to test
a freshly-installed phishing kit.

4.3 Implementation
The experimental setup on the honeypot leverages two

Apache HTTP modules, namely mod_php and mod_security.
We configure and extend these two modules in order to in-
corporate our system functionalities. In the following, we
describe in details our system implementation.

mod php provides PHP support to the Apache HTTP server,
and was extended to implement the attacker identification
and server-side protection modules. In particular, we hook
the PHP function rfc1867_post_handler, which is actually
the form-based file upload handler, and we save the IP ad-
dress of the attacker who has successfully uploaded a file in a
privileged location. To implement our server-side protection
module, we modify the functions php_std_post_handler

and php_default_treat_data, which provide respectively
the handler for HTTP POST and GET requests. These han-
dlers whitelist the 18 pre-installed vulnerable pages to ensure
that attackers can reach and use the honeypot. For requests
toward other pages, the handlers perform the attacker verifi-
cation and further replace the data with fake ones when the
request is not originating from an attacker. The handlers
identify specific types of information (such as login, email,
and credit card fields) by using a pre-defined set of keywords
and regular expressions, and overwrite these fields with ran-
domly generated data that reproduces the same format. In



other words, emails are replaced with seemingly valid (but
non-existent) email addresses, credit-card numbers by other
fake numbers, and so on. If the system is unable to recog-
nize the type of a field, its value is replaced with a random
string of alphanumeric characters.

mod security is a web application firewall that provides
attack detection, traffic monitoring, logging and real-time
analysis1. We extend the core functionalities of this mod-
ule in order to implement the client-side data mangling,
the malicious redirection disruption, and the data collec-
tion modules. The client-side data mangling behaves almost
the same way as for the server-side data modification. The
only difference is that it injects a HTML noscript tag and
a static JavaScript code in the HTTP response in case the
destination has not been identified by the attacker track-
ing module. The static JavaScript code, executed on the
remote victim browser, modifies any data provided by the
user before it is sent over the network. To achieve this,
the injected JavaScript first replaces the native form sub-
mission function submit() with a custom handler that dis-
patches automatically a submit event on the page. Then it
adds a submit event listener that hooks the form submis-
sion and modifies the submitted data. Note that the static
JavaScript is prepended to the HTML page so that it is
always executed before other JavaScript. During our exper-
iment, we did not observe any PK that tried to detect this
kind of hooking. If JavaScript is deactivated on the victim
browser, the HTML noscript tag redirects the victim to an
error page to prevent him from disclosing his credentials.
Moreover, in order to prevent potential victims from being
redirected towards other remote malicious destinations, we
configure mod_security to drop all HTTP responses that
contain redirections. Note that malicious redirections are
only disabled for potential victims that cannot be identified
by the attacker tracking module. The HTTP redirection
can be detected by combining the response status code and
the Location field in the HTTP header. To identify HTML
and JavaScript redirections, our module parses the content
of the response body and analyzes its HTML and JavaScript
code. The last configuration option that we have added to
the mod_security module is the ability to collect files up-
loaded to the honeypot. We configure the SecUploadDir and
SecUploadKeepFiles functions in order to save a copy of the
uploaded files into a protected location that is invisible to
the attackers.

Controlled SMTP: The honeypot is configured to send all
emails with a free email service provider through sSMTP2.
To prevent attackers from sending spam emails from our
honeypot, we limit to 2 the number of emails that each at-
tacker can send. The original binary of sSMTP is replaced
with a modified version that checks the presence of a spe-
cific flag in the arguments passed by the caller. Only the
PHP mail handler is configured to call the sSMTP with the
desired specific flag. Moreover, we modify the PHP mail
handler so that it keeps only the first recipient when the
destination contains multiple recipients.

Experiment Limitations: To mitigate denial of service
attacks or botnet scans, we rate-limited to 5 the number
of concurrent connections from the same IP address. We

1https://www.modsecurity.org/
2http://linux.die.net/man/8/ssmtp

opted for this configuration because we detected multiple
scan attempts to our honeypot using a common proxy server,
and that most of these attempts did not lead to any attack.
Moreover, we believe that it is highly unlikely to have more
than five victims connecting simultaneously from the same
IP address and it is equally unlikely to have more than five
simultaneous attackers interacting with our honeypot using
the same proxy IP address. Therefore, we believe that this
rate-limiting has a marginal impact on our experiment.

Our strict attacker identification process would inevitably
prevent attackers from submitting fake credentials to the site
in case they use a combination of IP address and user agent
that is different to the one used to upload the PK. How-
ever, we believe that this solution offers the best trade-off to
achieve a complete protection of the user privacy. Nonethe-
less, based on the number and diversity of the collected kits
and the potential victims, we believe that our experiment is
sufficiently representative of existing phishing attacks in the
wild, as discussed in section 5.4.

5. PHISHING ATTACK GLOBAL PICTURE
We collected 643 unique phishing kits, which were up-

loaded on our honeypot over a period of five months from
September 2015 to the end of January 2016. Out of this ini-
tial dataset, 474 kits (74% of our initial dataset) have been
correctly installed by 471 distinct attackers. The remain-
ing kits were likely automatically uploaded by exploitation
bots but never unpacked nor configured by the attackers.
The installed phishing kits targeted 36 distinct organiza-
tions, mostly online banks, but also social networks and
e-commerce portals. The five most frequent targets were
Paypal (375), Apple (26), Google (10), Facebook (9) and
the French online tax payment system (6).

This section presents an overview of our main findings,
including the way attackers setup and operate their phish-
ing attacks, the behavior of victims as they interact with
the phishing kits, and our assessment for the lifetime of live
phishing kits on the Internet. We initially focus on aggre-
gated statistics and on understanding the big picture, and
then we discuss the technical aspects related to how we iden-
tify victims, and how we separate them from attackers and
third party visitors.

Figure 3 illustrates an aggregated timeline of all phishing
attacks we observed in our study. On the graph, the Y-
axis shows the major phases of an attack, and the X-axis
indicates the time elapsed since the phishing kit was first
uploaded to the honeypot. During our experiment, and as
shown in Figure 3, we split the lifecycle of an attack in five
separate phases: installation, testing, interaction with the
first and last victims, and detection by popular blacklists.

The installation phase includes the actions performed by
the phishers to unpack, install, and set up the phishing kit
on the compromised machine. The testing phase describes
how phishers test and verify the correct behavior of their
newly installed kits. The first and last victims capture the
time elapsed until we observe respectively the first and last
connections from a victim. Lastly, the detection phase covers
the time at which the phishing URL is added to public phish-
ing blacklists (Google Safe Browsing and/or PhishTank in
our experiment). All results are illustrated using a box plot
that captures the distribution of the data spanning from the
first quartile to the third quartile, with the red line showing
the median value.
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Figure 3: Phishing Attack Timeline

5.1 Attackers Behavior
Based on the referer field, 29% of attackers located our

honeypot using search engine queries, mostly on Google
(28%), and Yahoo (0.8%). Interestingly, over 40% of the at-
tacks came with a Facebook-related referer, which seems to
indicate that attackers are increasingly using social networks
to share data (e.g., the location of web shells) or simply forge
the referer field to make their traffic look more legitimate.

While most of the attackers installed only one copy of the
phishing kit, some (26%) have installed their phishing kits
on multiple sub-directories. After the installation was com-
pleted, 70% of the attackers visited the phishing pages and
58% of them submitted fake credentials to verify whether
the kit was operating correctly. This confirms our initial
hypothesis that a phishing sandbox needs to protect the vic-
tims but let the attacker freely play and test the installed
pages, as described in Section 4. Without this feature, al-
most 60% of the uploaded kits would have been abandoned
by the attackers.

As illustrated in Figure 3, phishers installed the uploaded
kits very quickly on the compromised web server, just few
minutes after the kit was uploaded. The testing phase was
also performed immediately after the installation. However,
the few minutes of delay and the irregular patterns suggest
that this was performed manually and not through auto-
mated bots. Quite interestingly, after the testing phase was
completed, we never observed any connection to the phish-
ing pages from the same IP address.

In the second stage of a phishing attack, attackers would
make use of standard social engineering techniques in order
to drive potential victims into connecting to their phishing
pages. During the entire period of our study, we observed
only one attacker who has tried to use the compromised
machine to also send the phishing emails (all messages were
blocked by our firewall). This seems to suggest that at-
tackers have decoupled the process of compromising pub-
lic servers and installing phishing kits, from the process of
sending phishing messages. A possible explanation is that
using different infrastructures is more robust and decreases
the probability that the compromised server is detected by
security solutions.

5.2 Victims Behavior
To study the behavior of victims as they connect to the

phishing pages, we first need to separate them in our dataset
from other actors such as public crawlers and third party

visitors. We leverage multiple heuristics and empirical ob-
servations that we describe as follows. First of all, users
who were assigned the role attacker by the attacker track-
ing module do not belong to the victims category. We also
discard public crawlers by looking at the user-agent header
field in incoming HTTP requests – since it is reasonable to
assume that a victim would not spoof its browser user-agent
to mimic a search engine.

The most challenging part of our study was to separate
victims from other third party visitors, such as researchers
and security editors who may find the phishing URLs on
public blacklists and connect to the honeypot to verify the
content of the phishing pages. First of all, the source IP
address may reveal valuable information that enabled us to
classify users as either potential victims or third party visi-
tors. For example, after verification in the whois database,
we found that a large number of connections to our honey-
pot originated from university researchers (e.g. IP ranges
belonging to Boston University, University of Pennsylvania,
Carnegie Mellon, and Massachusetts Institute of Technol-
ogy) and security companies such as Kaspersky, Symantec,
Bluecoat, and Fortinet. To be conservative, we consider
all these users as third party visitors (even though this can
misclassify students who fell victim of the phishing attacks)
and we remove them from the victims’ category. This ap-
proach does not allow us to identify other third party visi-
tors, such as independent researchers and curious individu-
als who found the URL on public blacklists or hacking fo-
rums. To identify this specific category of users, we leverage
a number of additional heuristics, such as the fact that re-
searchers may connect at regular intervals to verify whether
the phishing pages are still available, or they spend a con-
siderable amount of time investigating different sub-pages
or other resources used by the phishing kit. Based on these
observations, we filter out a large number of users from the
victims category. We believe that our cleaning approach
was very conservative and had potentially over-estimated
the number of third-party researchers and reduced the num-
ber of victims. However, as we explain in more details later,
in our experiments we noticed that a large amount of incom-
ing HTTP requests were not from real victims and therefore
would inflate the results if included in our analysis.

After our aggressive filtering, we counted a total number of
2,468 victims who have connected to 127 distinct phishing
kits. Although the total number of victims seems to be
relatively small compared to previous work that measured



the impact of phishing attacks, our study has the merit of
providing the first fine-grained assessment of the number of
victims for a phishing attack. In fact we addressed two main
limitations that have contributed in the past to overestimate
the number of victims for a phishing attack.

First of all, we observed a spike in the number of (third
party) visitors just after a phishing page first appears on
public phishing blacklists (details in section 6.2). While
such crowd phenomenon is a natural consequence of black-
listing a phishing page, previous studies did not separate
such connections from the set of real victims, which could
have contributed to largely overestimating the real number
of victims. Using our sandbox configuration we were able
to identify and clearly separate this phenomenon, whose im-
pact is further explained in details in Section 6.

Second, our honeypot configuration also enabled us for the
first time to observe the victims submitting their credentials
to the phishing page. This is made possible as we analyze
the behavior of victims on a per-user basis, and so we can
verify whether each victim has performed any HTTP POST
request, which suggests that the user has submitted data to
the phishing page. Over the period of our study, we found
that 215 users (9% of the total) have indeed posted their
credentials to the phishing page. Note that since our system
replaces automatically the submitted data with fake values,
we are however unable to estimate the number of victims
who send fake credentials to the phishing page.

Finally, the geolocation of the victims did not provide any
particular insight, except for confirming that PKs are often
targeted to a particular audience (e.g., French citizens for
the French tax payment system), and in fact many PKs
received the majority of their victims from a single country.

5.3 PK Lifetime
We measure the effective lifetime of a phishing kit as an

indicator of the time interval during which a phishing kit
remains operational on the Internet. We consider a phish-
ing kit to be operational as long as new victims connect to
the phishing page. Note that even though the phishing kits
are kept online on the honeypot server throughout the dura-
tion of our study, we did not observe new victims after the
phishing URLs were blacklisted by a large enough number
of anti-phishing services and browser plugins.

A main challenge when measuring the effective lifetime of
a phishing kit is that it would be very difficult to capture the
exact time for the last victim who connect to the phishing
page. In particular, we may still observe few users connect-
ing to a phishing kit days after the phishing kit has been
abandoned by the attacker, thus causing us to overestimate
the lifetime of a phishing kit. To address this challenge, and
so to eliminate such outlier observations, we cut the tails of
the distribution and only consider the time interval during
which we observed 90% of victims connections. As shown in
Figure 3, the first victim captures the time elapsed until we
observed 5% of victims connecting to a given phishing page,
and the last victim captures the time elapsed until we have
observed 95% of victims. Using this definition, we observed
during our study that the first victims connect to a phishing
page in average two days after the page was installed by the
attacker. The last victims (at the 95% threshold) connect
in average to the phishing page after 10 days. This gives us
an estimated lifetime of eight days.

5.4 Effectiveness of Phishing Blacklist
To evaluate the reaction of the security community against

phishing attacks, we leverage two anti-phishing services: GSB
and PhishTank. We chose these two actors first because
GSB is integrated by default into Chrome and Firefox, which
together account for 87.1% of the market of Internet browsers3,
and second because PhishTank has been extensively used as
a source feed in many previous research studies [44, 29, 26].
Our main goal in this section is to measure the time it takes
for an anti-phishing service to blacklist phishing URLs since
the corresponding kits were first uploaded to the honeypot.
To do so, and throughout the duration of our experiment,
we periodically check, multiple times per day, both blacklists
for all phishing URLs that were installed in our honeypot.

While almost all phishing pages that were installed on the
honeypot (98% of them) were correctly detected and black-
listed by the two phishing blacklists, we observed an average
detection latency of 12 days. More precisely, we split this
value in two separate categories: phishing kits for which we
observed victims were blacklisted in average 20 days after
installation, while kits with no victims were blacklisted in
average 10 days after their installation. As illustrated in
Figure 3, the detection latency varies quite a lot depending
on the phishing pages and the evasion techniques used by the
attackers, as further discussed in Section 6.2. More impor-
tantly, 62% of the phishing kits were blacklisted only after
75% of victims had already connected to the corresponding
phishing page. While these observations seem to indicate
that the anti-phishing services were not effective against a
certain category of phishing attacks, they were indeed very
proactive against another 27% of the phishing kits during
our study, as they blacklisted these URLs even before 25%
of victims have yet connected to the phishing page.

Another interesting aspect is the fact that GSB initially
blacklisted only individual phishing kits. However, after
many phishing pages had been reported for the same domain
name, GSB changed its policy and started blacklisting entire
directories subtrees in those domains. This approach may
have proactively blacklisted other kits that were installed
within these same directories.

5.5 Measurement Bias
Clayton et al. [7] draw the attention to the potential mea-

surement bias in this type of studies. For instance, Phish-
Tank only contains 40% of all phishing URLs, but 100%
of all PayPal phish. Therefore, if the composition of the
PhishTank dataset is not understood, the focus on attack-
ing PayPal will be overestimated. In our study, we evaluate
the effectiveness of the PhishTank dataset against the 471
phishing kits installed in our honeypot. Even though an im-
portant amount (375, i.e., about 80%) of these PKs involved
PayPal, only a small portion (about 1%) of them have been
reported and thus included in the PhishTank dataset. This
in return corroborates to some extent the diversity and the
representativeness of our dataset. We thus argue that our
measurement is relatively representative.

Another concern may be related to the large number of
PKs that received no victims. It is hard to know the real
reason, but we do not believe that the fact that attackers
could have recognized the honeypot is the main explanation

3http://www.w3schools.com/browsers/browsers stats.asp



Drop Techniques Live Kits
Email 443
File 30
POST 2
MAILTO 1

Table 1: Drop mechanisms of the live phishing kits

behind this phenomenon (even though in some cases it could
certainly be the case).

In 34% of the PKs that did not receive any victims, the
system did not receive any follow-up connection after the
PK was uploaded. These PKs are mostly uploaded by au-
tomated exploitation bots without any human activity. In
this case, it is possible that the attackers had many available
targets that were compromised by their bot, and simply did
not choose to use our system. In the remaining 66% of the
kits with no victims, the attacker connected to the PK and
explicitly tested it by submitting some credentials. Our logs
did not report anything anomalous and the PK correctly
sent the email with the testing credentials to the attacker,
but then received no victims. Even though we do not know
the reason, it is possible that no victims clicked on the phish-
ing link, or that the phishing emails were largely stopped by
antispam solutions. Overall, since we observed that PKs
are often fire-and-forget pages uploaded in large numbers
and used only for few days, it can be normal that some of
them are never used and some have zero-success rate.

6. CASE STUDIES
In this section we provide details about four interesting

cases we observed in our experiments including a new phish-
ing kit dropping technique, a blacklist evasion technique, the
time distribution of victims as they connected to the phish-
ing pages, and we discuss a possible way to use our system
to detect drop email addresses from live phishing kits.

6.1 Dropping Techniques
Most of the phishing kits contain the complete phishing

web sites in a ready-to-deploy package. One of the main
function of these kits is to automatically send the collected
information to the attackers. In order to assess the technical
evolution of the phishing kits since a previous study [8] con-
ducted in 2008, we analyze the mechanisms that the phishing
kits use to exfiltrate information.

As illustrated in Table 1, the vast majority of kits use
email accounts to send data to the attackers. Few kits save
directly the collected information on the server, and only two
send it to a remote server using a HTTP POST request. In-
terestingly, we observed during our study that attackers ex-
perimented a new drop technique that aimed at sending the
information in a HTML form through an email directly from
the end user terminal. In order for this to work, attackers
configured the HTML form action to mailto the values di-
rectly to their email address. Even though this technique is
already well documented4, this is the first time that phishers
were observed to implement it inside a phishing kit. How-
ever, note that this method is very unreliable and only works
with a particular combination of Internet Explorer and Out-
look Express.

4http://www.html-form-guide.com/email-form/email-form-
mailto.html

To further discover new techniques adopted by phishers,
we analyze all the external links included in the kits up-
loaded to our honeypot. We found that 10 kits made use of
resources directly fetched from the content distribution net-
work (CDN) of the target organization. More interestingly,
we also found that another 98 kits contained code to contact
other computers likely under control of the phishers. These
were either carefully disguised backdoors to exfiltrate the
stolen credentials on a second channel (which was blocked
by our firewall), or ways to retrieve information provided by
the attackers, typically blacklists of endpoints or user-agents
to block from viewing the page.

6.2 Blacklist Evasion
During our experiments we experienced an unexpected

service outage caused by disk space exhaustion. Further
investigation revealed that the exhaustion was caused by a
phishing kit whose entry page, namely index.php, automat-
ically creates a random subdirectory, copies the content of
the entire kit inside it, and then redirects the visitor to the
newly generated random location. The following PHP code
presents an example of such behavior:

$random=rand(0,100000000000);
$md5=md5("$random");
$base=base64_encode($md5);
$dst=md5("$base");
$src="New Folder";
recurse_copy( $src, $dst );
header("location:$dst");

After the PK was installed, the phisher visited the entry
page, which generated a copy of the kit at a random loca-
tion. Interestingly, the phisher could distribute either the
newly generated link to conceal the original phishing page
location, or the link to the entry page so that each visitor
would be automatically redirected to a different location.
To understand the intended function of this phishing kit, we
leverage the server access log to observe the first victims of
this kit. We found that the phisher conducted a phishing
campaign with a link to the entry page of the phishing kit,
as the first victims landed directly to the entry page. This
approach may seem controversial at a first glance, as the
phishers exposed the real link to the phishing kit instead of
hiding it from being blacklisted. In order to understand the
reason behind this, we examine how PhishTank and Google
Safe Browsing react to such phishing kit.

PhishTank publishes phishing reports submitted by differ-
ent users, which allows us to retrieve the reported links and
further compare them with the original link to the entry
page. Unfortunately, most of the users had been fooled by
this technique, and reported the randomly generated loca-
tions instead of the entry page, as illustrated by the following
anonymized web server access log:

[12/Nov/2015:18:57:41] 14.xx.xxx.198
GET /kit/ 302
User-Agent: curl/7.25.0
[12/Nov/2015:19:01:35] 213.xx.xxx.100
GET /kit/8c5fcf4518e94a9f272d60ee75c309a7 301
User-Agent: Mozilla/4.0
[12/Nov/2015:19:20:45] 213.xx.xxx.100
GET /kit/8c5fcf4518e94a9f272d60ee75c309a7/redirection.php 200
User-Agent: Mozilla/4.0

The user first leveraged a command line tool (curl) to visit
the link distributed by the phisher, which referenced the en-
try page of the phishing kit. As a consequence, a new phish-
ing link has been generated, which however has not yet been
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Figure 4: Visitor time distribution of the kit with blacklist
evasion technique

visited until the reporter verified it a few minutes later with
an IP address different to his first connection. The reporter
was then redirected to the phishing page under a random
location, which was also the link reported to PhishTank.

This PK confirms the existence of the crowd effect de-
scribed in the previous section. In fact, while real vic-
tims would visit different randomly generated URLs, we ob-
served hundreds of incoming connections toward the same
link blacklisted by PhishTank. In Figure 4, the X-axis presents
the number of hours in log scale that have elapsed after the
kit was uploaded to the honeypot. The Y-axis describes
the number of visitors that have connected to the phishing
kit. The vertical lines correspond to the time upon which
Google Safe Browsing or PhishTank has detected the given
phishing kit. During the first few days the phisher was able
to attract few victims, who connected directly to the entry
page. After the random link was published by PhishTank
we received many connections from researchers and security
companies, which connected to the reported link instead of
the entry page of the phishing kit. However, our technique
was able to correctly remove these visits from the victim set.

Google Safe Browsing publishes only the MD5 digest of
the phishing links, which are represented as host-suffix/path-
prefix expressions. These expressions can match arbitrary
URLs as long as they have the required host suffix and path
prefix. This approach helps to protect against sites where
the attacker uses randomly generated sub-paths to evade
blacklists5.

6.3 Victim Time Distribution
To illustrate and further confirm our measurement of the

effective lifetime of phishing kits discussed in Section 5.3,
we plot the victim time distribution from four of the most
significant phishing kits, as presented by Figure 5.

In general, we observe two different distribution shapes:
(1) a skewed right distribution where the majority of vic-
tims connected to the phishing kit within a short period of
time after the kit was uploaded on the honeypot and (2) a
bimodal distribution where two groups of victims connected
to the phishing kit during two different periods. Kits 1-3,

5https://code.google.com/p/google-safe-browsing/wiki/
SafeBrowsingDesign

as presented in Figures 5a, 5b and 5c belong to the first
category, having a single group of victims within a short pe-
riod, followed by a long tail of very few victims. The phish-
ers of the three kits performed probably only one phishing
campaign after which they abandoned these kits. Differ-
ent to the previous kits, Kit 4 in Figure 5d belongs to the
second category, with two distinct groups of victims. The
first group connected to the phishing kit within 24 hours,
while the second burst arrived after exactly 70 hours (about
3 days). This is probably a consequence of two different
phishing campaigns.

As shown in Figure 5, even if phishing kits remain online
for a long period of time, they are only active for a short
duration after the kit is uploaded to a compromised server.
Besides, this effective lifetime is largely unaffected by the
time at which Google Safe Browsing (GSB) or PhishTank
blacklist the phishing pages, since these services usually be-
come effective only after most victims have already visited
the phishing pages. This victim time distribution further
supports the way we measure the effective lifetime of the
phishing kits described in Section 5.3.

6.4 Real-time Email Detection
Our results show that GSB and PhishTank are not fast

enough to blacklist new phishing kits, which leaves victims
on their own to identify and protect against phishing attacks.
We believe that honeypot systems, as the one described in
this paper, could be deployed to provide an early detection
mechanism to promptly identify drop email addresses used
by the attackers. These addresses can be further used by
the email service providers to disable the email accounts to
prevent phishers from retrieving the stolen credentials.

Our custom PHP interpreter records constantly the at-
tempts to send an email even when the attacker makes use
of the error control operators (@)6 to silence all error mes-
sages. Each attempt is logged along with the file path of
the script that tried to send an email and the destination
address. Our system can detect the drop email as soon as
an email is sent to the phisher, which may be either trig-
gered by the phisher who verifies the good behavior of the
phishing kit or by the first victim who submits some data.

In order to assess the effectiveness of this approach, we
manually check the emails sent to the attackers to estimate
how many attacker email accounts could have been detected
during our study. In total, we have found 68 distinct drop
email addresses in the sent box – so each email address has
been used in average by two different phishing kits. Un-
fortunately, only four of these addresses were disabled or
were unreachable at the moment when the phishing kits at-
tempted to send the first stolen credentials. This shows that
email providers already disable drop email accounts. How-
ever, this process can greatly benefit from using a more sys-
tematic infrastructure (like the one presented in this paper)
to collect more addresses in an efficient manner.

7. RELATED WORK
The literature includes a large number of papers related

to phishing attacks. We classify these papers into the fol-
lowing three categories: anatomy of phishing, anti-phishing
techniques, and evaluation of anti-phishing techniques.

6http://php.net/manual/en/language.operators.
errorcontrol.php
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Figure 5: Victims time distribution for the most significant phishing kits

Anatomy of Phishing
The work most closely related to our study is from Waston
et al., who described two phishing incidents [40] that were
discovered by the Honeynet Project [38]. Authors describe
how phishers behave and the techniques used to set up the
phishing sites. One of the two phishing kits received 256 in-
bound HTTP requests, but apparently no personal data was
submitted by the visitors. Yet, authors had to shut down
the honeypot because they did not have any system that can
avoid user data from being stolen. Our work adopts a sim-
ilar honeypot-based approach but focuses on providing an
ethical system to study how real-world phishing attacks are
structured. McGrath et al. [27] analyze the modus operandi
of phishers, the characteristics of phishing URLs, the do-
mains, and their hosting infrastructure. The authors also es-
timate the lifetime of phishing domain names by using peri-
odically collected DNS records. Moore et al. [30] present the
evidence that miscreants use search engine (“Google Hack-
ing”) to compromise and re-compromise machines, which are
further used to host phishing sites. In another work, Moore
et al. [33] studied the temporal correlations between spam
and phishing websites in order to understand the attack-
ers behavior, and to evaluate the effectiveness of phishing
site take-down. Sheng et al. [36] conducted a demographic
analysis of victims’ susceptibility to phishing attacks and
discussed the effectiveness of educational materials.

A few studies have focused on estimating the success rate
of phishing emails. Jagatic et al. first report a baseline suc-
cess rate for individual phishing emails [17], while Jakobsson
et al. propose ethical phishing experiments on a popular on-
line auction website [19], in order to measure the success rate
of simulated phishing emails. The reported success rate is
respectively about 15% and 11% (compared to 9% we found
in our study). However, these works measured the success
rate based only on simulated phishing attacks.

Multiple studies measured the impact of phishing on po-
tential victims. Moore et al. have empirically measured
the lifetime of phishing sites and the number of user re-
sponses [29]. Authors retrieved confirmed reports from Phish-
Tank, and then relied on the records generated by Webalizer,
a free web server log analysis tool, in case where it was al-
ready installed on the compromised websites. However, this
tool saves merely the number of hits for a given web page
instead of the unique number of visits, which makes the re-
ported results a very rough estimation. The authors were
also able to estimate the number of victims for 20 phish-
ing sites, based on the assumption that only users who fall
victim of a phishing would be redirected to a confirmation
page after they have provided their credentials. Trusteer
measured the effectiveness of phishing attacks based on the
statistics gathered by a browser plugin over a period of three
months [39]. The authors found that in 2009, 45% of bank
customers who were redirected to a phishing site divulged



their personal credentials. However, their study provides
only a partial view of a phishing attack.

Cova et al. in [8] studied the phishing kits distributed
for free and those obtained by crawling live phishing sites.
They analyzed the target organizations, the techniques used
to exfiltrate data, and the obfuscation methods implemented
in the phishing kits.

Anti-Phishing Techniques
Phishing countermeasures have attracted a lot of interest
from the research community. The proposed countermea-
sures can be grouped into three categories: phishing page
detection, blocking, and user training.

Most phishing detection techniques identify phishing pages
by building a classifier using different heuristics based on
URL features [13, 24] or on the web page content [35, 45, 41].
Some studies aim at detecting and blocking phishing attacks
at different stages. For instance, Fette et al. [12] use machine
learning to identify and block phishing emails. Several stud-
ies propose a browser plugin to protect users from phish-
ing [6, 9, 20]. Another popular approach to block phishing
is to compile and distribute blacklists, such as Google Safe
Browsing and PhishTank. A number of studies have focused
on education against phishing attacks and how to train users
to identify phishing [22, 21, 23, 34]. Finally, only one study
focused on identifying drop email addresses through lever-
aging the list of known phishing websites from PhishTank
and metadata maintained by email providers [31]. However,
this method introduces a significant latency compared to our
approach since public blacklists may not be efficient enough
to promptly detect live phishing kits.

Evaluation of Anti-Phishing Techniques
In 2006, a number of studies concluded that anti-phishing
solutions [44], security indicators [10], and browsers tool-
bars [42] were ineffective in detecting phishing sites and pro-
tecting users.

In 2007, Ludl et al. [26] and Sheng et al. [37] specifically
focused on the effectiveness of blacklists to prevent phishing,
reaching different results. In the first study, the authors
collected online phishing URLs from PhishTank, and tested
them against Google Safe Browsing along with the Phish
Filter of Microsoft Internet Explorer. This study concluded
that the blacklist approach is efficient in protecting users,
especially Google which correctly recognized almost 90% of
the malicious URLs [26]. In the second study, Sheng et
al. evaluated five blacklists (including the ones tested by
Ludl et al.) with phishing URLs less than 30 minutes old,
collected from the University of Alabama Phishing Team’s
email data repository. The paper found that those blacklists
were ineffective as most of them caught less than 20% of
phishing pages at hour zero [37].

Egelman et al. conducted an empirical study to evalu-
ate the effectiveness of web browser phishing warning and
provided some recommendations to improve security indica-
tors [11]. In 2014, Gupta et al. [14] measured the effective-
ness of educating pages [21] to see if they helped users not
to fall for phishing.

Most existing studies evaluated the effectiveness of anti-
phishing techniques only after the phishing page was re-
ported publicly or privately. Our study assesses instead the
effectiveness of the blacklist approach right from the begin-
ning of the phishing attacks.

8. CONCLUSIONS
In this paper we present the design and implementation of

a honeypot system especially designed to analyze and disarm
phishing kits. Using this infrastructure, we conducted a five-
month experiment to understand and measure the entire life
cycle of this type of attack.

Different from previous works, our approach is able to
measure the effective lifetime of phishing kits, which starts
immediately after the kit installation. We are also the first
to clearly distinguish the victims from the attackers and the
other third party visitors. Our results show that less vic-
tims divulge their credentials compared to previous studies
conducted in 2009 [39], maybe due to an increased user ed-
ucation in the past seven years against this threat.
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